987 resultados para chemical bonds
Resumo:
This work presents discussions on the teaching of Chemical Bonds in high school and some implications of this approach in learning chemistry by students. In general, understanding how the chemicals combine to form substances and compounds, it is a key point for understanding the properties of substances and their structure. In this sense, the chemical bonds represent an extremely important issue, and their knowledge is essential for a better understanding of the changes occurring in our world. Despite these findings, it is observed that the way in which this concept is discussed in chemistry class has contributed, paradoxically, to the emergence of several alternative designs, making the understanding of the subject by students. It is believed that one of the explanations for these observations is the exclusive use of the "octet rule" as an explanatory model for the Chemical Bonds. The use of such a model over time eventually replace chemical principles that gave rise to it, transforming knowledge into a series of uninteresting rituals and even confusing for students. Based on these findings, it is deemed necessary a reformulation in the way to approach this content in the classroom, taking into account especially the fact that the explanations of the formation of substances should be based on the energy concept, which is fundamental to understanding how atoms combine. Thus, the main question of the survey and described here of the following question: Can the development of an explanatory model for the Chemical Bonds in high school based on the concept of energy and without the need to use the "octet rule"? Based on the concepts and methodologies of modeling activity, we sought the development of a teaching model was made through Teaching Units designed to give subsidies to high school teachers to address the chemical bonds through the concept of energy. Through this work it is intended to make the process of teaching and learning of Chemical Bonds content becomes more meaningful to students, developing models that contribute to the learning of this and hence other basic fundamentals of chemistry.
Resumo:
This work presents discussions on the teaching of Chemical Bonds in high school and some implications of this approach in learning chemistry by students. In general, understanding how the chemicals combine to form substances and compounds, it is a key point for understanding the properties of substances and their structure. In this sense, the chemical bonds represent an extremely important issue, and their knowledge is essential for a better understanding of the changes occurring in our world. Despite these findings, it is observed that the way in which this concept is discussed in chemistry class has contributed, paradoxically, to the emergence of several alternative designs, making the understanding of the subject by students. It is believed that one of the explanations for these observations is the exclusive use of the "octet rule" as an explanatory model for the Chemical Bonds. The use of such a model over time eventually replace chemical principles that gave rise to it, transforming knowledge into a series of uninteresting rituals and even confusing for students. Based on these findings, it is deemed necessary a reformulation in the way to approach this content in the classroom, taking into account especially the fact that the explanations of the formation of substances should be based on the energy concept, which is fundamental to understanding how atoms combine. Thus, the main question of the survey and described here of the following question: Can the development of an explanatory model for the Chemical Bonds in high school based on the concept of energy and without the need to use the "octet rule"? Based on the concepts and methodologies of modeling activity, we sought the development of a teaching model was made through Teaching Units designed to give subsidies to high school teachers to address the chemical bonds through the concept of energy. Through this work it is intended to make the process of teaching and learning of Chemical Bonds content becomes more meaningful to students, developing models that contribute to the learning of this and hence other basic fundamentals of chemistry.
Resumo:
Aborda-se a biossegurança aplicada a radiologia dentária relativa à radiação ionizante e a exposição aos agentes biológicos, a que pacientes, grávidas / feto e profissionais são submetidos durante os procedimentos radiológicos. As diferentes doses de radiação emitidas, pelos equipamentos utilizados em radiologia oral, quer nos sistemas analógicos, como digitais. As diversas formas de propagação de micro-organismos, durante a obtenção de imagens radiográficas. As medidas de biossegurança, para prevenção desses riscos em radiologia dentária, através da radioprotecção e do controlo da infeção. A radiação ionizante pela sua elevada energia, é capaz de penetrar na matéria, ionizar os átomos, romper ligações químicas e causar danos nos tecidos biológicos. A exposição a doses elevadas de radiação ionizante pode ainda resultar, na destruição de células ou na indução de cancro. Atualmente a biossegurança em radiologia dentária, tem como principais objetivos, a redução da dose de radiação e evitar a infeção cruzada entre os diferentes agentes envolvidos.
Resumo:
TiSiC-Cr coatings, with Cr and Si as additional elements, were deposited on Si, C 45 and 316 L steel substrates via cathodic arc evaporation. Two series of coatings with thicknesses in the range of 3.6–3.9 μm were produced, using either CH4 or C2H2 as carbon containing gas. For each series, different coatings were prepared by varying the carbon rich gas flow rate between 90 and 130 sccm, while maintaining constant cathode currents (110 and 100 A at TiSi and Cr cathodes, respectively), substrate bias (–200 V) and substrate temperature (∼320 °C). The coatings were analyzed for their mechanical characteristics (hardness, adhesion) and tribological performance (friction, wear), along with their elemental and phase composition, chemical bonds, crystalline structure and cross-sectional morphology. The coatings were found to be formed with nano-scale composite structures consisting of carbide crystallites (grain size of 3.1–8.2 nm) and amorphous hydrogenated carbon. The experimental results showed significant differences between the two coating series, where the films formed from C2H2 exhibited markedly superior characteristics in terms of microstructure, morphology, hardness, friction behaviour and wear resistance. For the coatings prepared using CH4, the measured values of crystallite size, hardness, friction coefficient and wear rate were in the ranges of 7.2–8.2 nm, 26–30 GPa, 0.3–0.4 and 2.1–4.8 × 10−6 mm3 N−1 m−1, respectively, while for the coatings grown in C2H2, the values of these characteristics were found to be in the ranges of 3.1–3.7 nm, 41–45 GPa, 0.1–0.2 and 1.4–3.0 × 10−6 mm3 N−1 m−1, respectively. Among the investigated coatings, the one produced using C2H2 at the highest flow rate (130 sccm) exhibited the highest hardness (45.1 GPa), the lowest friction coefficient (0.10) and the best wear resistance (wear rate of 1.4 × 10−6 mm3 N−1 m−1).
Resumo:
Es ist ein lang gehegter Traum in der Chemie, den Ablauf einer chemischen Reaktion zu kontrollieren und das Aufbrechen und Bilden chemischer Bindungen zu steuern. Diesem Ziel verschreibt sich auch das Forschungsgebiet der Femtochemie. Hier werden Femtosekunden Laserpulse eingesetzt um auf dem Quantenlevel molekulare Dynamiken auf ihren intrinsischen Zeitskalen zu kontrollieren und das System selektiv und effizient von einem Anfangs- in einen Zielzustand zu überführen. Der Wunsch, mit geformten Femtosekunden Laserpulsen Kontrolle über transiente Dynamiken und finale Populationen auszuüben, zu beobachten und zu verstehen, bildet auch die Motivation für diese Arbeit. Hierzu wurden mit Hilfe der Photoelektronenspektroskopie Untersuchungen zur Wechselwirkung atomarer und molekularer Prototypsysteme mit intensiven, geformten Femtosekunden Laserpulsen durchgeführt. Die Verwendung von Modelsystemen ermöglicht es, grundlegende Mechanismen der kohärenten Kontrolle in intensiven Laserfeldern zu analysieren, ohne dass sie durch komplexe Wechselwirkungen verschleiert werden. Zunächst wurde die Wechselwirkung von Kaliumatomen mit gechirpten Femtosekunden Laserpulsen untersucht. In den Experimenten wurden sowohl transiente Dynamiken als auch die Endbesetzungen der elektronischen Zustände abgebildet. In den folgenden Experimenten wurde das Quantenkontrollszenario SPODS auf die gekoppelte Elektronen-Kern-Dynamik in Molekülen übertragen. Die Kontrolle basiert auf der Erzeugung und Manipulation von Ladungsoszillationen durch Pulssequenzen. Der letzte Teil widmet sich der Entwicklung adiabatischer Kontrollmechanismen in Molekülen. Bei den Experimenten wurden gechirpte Airypulse eingesetzt um robuste Starkfeldanregung in molekularen Systemen zu induzieren. In Zukunft wird die Erforschung immer komplexerer Moleküle im Rahmen der transienten Kontrolle im Fokus stehen. Dabei werden nicht nur die effiziente Besetzung gebundener Zustände von Interesse sein, sondern auch die gezielte Dissoziation in spezifische Fragmente, photoinduzierte Isomerisierungsreaktionen oder die Kontrolle über transiente Dynamiken, die Einfluss auf andere molekulare Eigenschaften haben. Vor dem Hintergrund dieses übergeordneten Wunsches, photochemische Reaktionen immer komplexerer Moleküle, bis hin zu großen, biologisch relevanten Molekülen, zu kontrollieren, ist es umso wichtiger, die zugrundeliegenden Anregungsmechanismen in einfachen Systemen nachzuvollziehen. In den hier präsentierten Experimenten wurde gezeigt, wie die simultane Beobachtung der bekleideten und der stationären Zustände in atomaren Systemen zu einem umfassenden Bild der lichtinduzierte Dynamiken führen kann. Die gewonnenen Erkenntnisse können auf die Steuerung gekoppelter Dynamiken übertragen werden, durch die Kontrolle auch in molekularen Systemen möglich wird.
Resumo:
The reaction of localised C=C bonds on the surface of activated carbons has been shown to be an effective method of chemical modification especially using microwave-assisted reactions.
Resumo:
We report on the use of the hydrogen bond accepting properties of neutral nitrone moieties to prepare benzylic-amide-macrocycle-containing [2]rotaxanes in yields as high as 70 %. X-Ray crystallography shows the presence of up to four intercomponent hydrogen bonds between the amide groups of the macrocycle and the two nitrone groups of the thread. Dynamic 1H NMR studies of the rates of macrocycle pirouetting in nonpolar solutions indicate that amide-nitrone hydrogen bonds are particularly strong, ~1.3 and ~0.2 kcal mol-1 stronger than similar amide-ester and amide-amide interactions, respectively. In addition to polarizing the N-O bond through hydrogen bonding, the rotaxane structure affects the chemistry of the nitrone groups in two significant ways: The intercomponent hydrogen bonding activates the nitrone groups to electrochemical reduction, a one electron reduction of the rotaxane being stablized by a remarkable 400 mV (8.1 kcal mol-1) with respect to the same process in the thread; encapsulation, however, protects the same functional groups from chemical reduction with an external reagent (and slows down electron transfer to and from the electroactive groups in cyclicvoltammetry experiments). Mechanical interlocking with a hydrogen bonding molecular sheath thus provides a route to an encapsulated polarized functional group and radical anions of significant kinetic and thermodynamic stability.
Resumo:
Partition of heavy metals between particulate and dissolve fraction of stormwater primarily depends on the adsorption characteristics of solids particles. Moreover, the bioavailability of heavy metals is also influenced by the adsorption behaviour of solids. However, due to the lack of fundamental knowledge in relation to the heavy metals adsorption processes of road deposited solids, the effectiveness of stormwater management strategies can be limited. The research study focused on the investigation of the physical and chemical parameters of solids on urban road surfaces and, more specifically, on heavy metal adsorption to solids. Due to the complex nature of heavy metal interaction with solids, a substantial database was generated through a series of field investigations and laboratory experiments. The study sites for the build-up pollutant sample collection were selected from four urbanised suburbs located in a major river catchment. Sixteen road sites were selected from these suburbs and represented typical industrial, commercial and residential land uses. Build-up pollutants were collected using a wet and dry vacuum collection technique which was specially designed to improve fine particle collection. Roadside soil samples were also collected from each suburb for comparison with the road surface solids. The collected build-up solids samples were separated into four particle size ranges and tested for a range of physical and chemical parameters. The solids build-up on road surfaces contained a high fraction (70%) of particles smaller than 150ìm, which are favourable for heavy metal adsorption. These solids particles predominantly consist of soil derived minerals which included quartz, albite, microcline, muscovite and chlorite. Additionally, a high percentage of amorphous content was also identified in road deposited solids. In comparing the mineralogical data of surrounding soil and road deposited solids, it was found that about 30% of the solids consisted of particles generated from traffic related activities on road surfaces. Significant difference in mineralogical composition was noted in different particle sizes of build-up solids. Fine solids particles (<150ìm) consisted of a clayey matrix and high amorphous content (in the region of 40%) while coarse particles (>150ìm) consisted of a sandy matrix at all study sites, with about 60% quartz content. Due to these differences in mineralogical components, particles larger than and smaller than 150ìm had significant differences in their specific surface area (SSA) and effective cation exchange capacity (ECEC). These parameters, in turn, exert a significant influence on heavy metal adsorption. Consequently, heavy metal content in >150ìm particles was lower than in the case of fine particles. The particle size range <75ìm had the highest heavy metal content, corresponding with its high clay forming minerals, high organic matter and low quartz content which increased the SSA, ECEC and the presence of Fe, Al and Mn oxides. The clay forming minerals, high organic matter and Fe, Al and Mn oxides create distinct groups of charge sites on solids surfaces and exhibit different adsorption mechanisms and bond strength, between heavy metal elements and charge sites. Therefore, the predominance of these factors in different particle sizes leads to different heavy metal adsorption characteristics. Heavy metals show preference for association with clay forming minerals in fine solids particles, whilst in coarse particles heavy metals preferentially associate with organic matter. Although heavy metal adsorption to amorphous material is very low, the heavy metals embedded in traffic related materials have a potential impact on stormwater quality.Adsorption of heavy metals is not confined to an individual type of charge site in solids, whereas specific heavy metal elements show preference for adsorption to several different types of charge sites in solids. This is attributed to the dearth of preferred binding sites and the inability to reach the preferred binding sites due to competition between different heavy metal species. This confirms that heavy metal adsorption is significantly influenced by the physical and chemical parameters of solids that lead to a heterogeneity of surface charge sites. The research study highlighted the importance of removal of solids particles from stormwater runoff before they enter into receiving waters to reduce the potential risk posed by the bioavailability of heavy metals. The bioavailability of heavy metals not only results from the easily mobile fraction bound to the solids particles, but can also occur as a result of the dissolution of other forms of bonds by chemical changes in stormwater or microbial activity. Due to the diversity in the composition of the different particle sizes of solids and the characteristics and amount of charge sites on the particle surfaces, investigations using bulk solids are not adequate to gain an understanding of the heavy metal adsorption processes of solids particles. Therefore, the investigation of different particle size ranges is recommended for enhancing stormwater quality management practices.
Resumo:
Graphene-based resonators are envisioned to build the ultimate limit of two-dimensional nanoelectromechanical system due to their ultrasensitive detection of mass, force, pressure and charge. However, such application has been greatly impeded by their extremely low quality factor. In the present work, we explore, using the large-scale molecular dynamics simulation, the possibility of tailoring the resonance properties of a bilayer graphene sheet (GS) with interlayer sp3 bonds. For the bilayer GS resonator with interlayer sp3 bonds, we discovered that the sp3 bonds can either degrade or enhance the resonance properties of the resonator depending on their density and location. It is found that the distribution of sp3 bonds only along the edges of either pristine or hydrogenated bilayer GS, leads to a greatly enhanced quality factor. A quality factor of ~1.18×105 is observed for a 3.07×15.31 nm2 bilayer GS resonator with sp3 bonds, which is more than 30 times larger comparing with that of a pristine bilayer GS. The present study demonstrates that the resonance properties of a bilayer GS resonator can be tuned by introducing sp3 bonds. This finding provides a useful guideline for the synthesis of the bilayer GS for its application as a resonator component.
Resumo:
Biodiesel, produced from renewable feedstock represents a more sustainable source of energy and will therefore play a significant role in providing the energy requirements for transportation in the near future. Chemically, all biodiesels are fatty acid methyl esters (FAME), produced from raw vegetable oil and animal fat. However, clear differences in chemical structure are apparent from one feedstock to the next in terms of chain length, degree of unsaturation, number of double bonds and double bond configuration-which all determine the fuel properties of biodiesel. In this study, prediction models were developed to estimate kinematic viscosity of biodiesel using an Artificial Neural Network (ANN) modelling technique. While developing the model, 27 parameters based on chemical composition commonly found in biodiesel were used as the input variables and kinematic viscosity of biodiesel was used as output variable. Necessary data to develop and simulate the network were collected from more than 120 published peer reviewed papers. The Neural Networks Toolbox of MatLab R2012a software was used to train, validate and simulate the ANN model on a personal computer. The network architecture and learning algorithm were optimised following a trial and error method to obtain the best prediction of the kinematic viscosity. The predictive performance of the model was determined by calculating the coefficient of determination (R2), root mean squared (RMS) and maximum average error percentage (MAEP) between predicted and experimental results. This study found high predictive accuracy of the ANN in predicting fuel properties of biodiesel and has demonstrated the ability of the ANN model to find a meaningful relationship between biodiesel chemical composition and fuel properties. Therefore the model developed in this study can be a useful tool to accurately predict biodiesel fuel properties instead of undertaking costly and time consuming experimental tests.
Resumo:
Phospholipids are the key structural component of cell membranes, and recent advances in electrospray ionization mass spectrometry provide for the fast and efficient analysis of these compounds in biological extracts.1-3 The application of electrospray ionization tandem mass spectrometry (ESI-MS/MS) to phospholipid analysis has demonstrated several key advantages over the more traditional chromatographic methods, including speed and greater structural information.4 For example, the ESI-MS/MS spectrum of a typical phospholipidsparticularly in negative ion modesreadily identifies the carbon chain length and the degree of unsaturation of each of the fatty acids esterified to the parent molecule.5 A critical limitation of conventional ESI-MS/MS analysis, however, is the inability to uniquely identify the position of double bonds within the fatty acid chains. This is especially problematic given the importance of double bond position in determining the biological function of lipid classes.6 Previous attempts to identify double bond position in intact phospholipids using mass spectrometry employ either MS3 or offline chemical derivatization.7-11 The former method requires specialized instrumentation and is rarely applied, while the latter methods suffer from complications inherent in sample handling prior to analysis. In this communication we outline a novel on-line approach for the identification of double bond position in intact phospholipids. In our method, the double bond(s) present in unsaturated phospholipids are cleaved by ozonolysis within the ion source of a conventional ESI mass spectrometer to give two chemically induced fragment ions that may be used to unambiguously assign the position of the double bond. This is achieved by using oxygen as the electrospray nebulizing gas in combination with high electrospray voltages to initiate the formation of an ozoneproducing.
Resumo:
Nitrogenated carbon nanotips with a low atomic concentration of nitrogen have been synthesized by using a custom-designed plasma-enhanced hot-filament plasma chemical vapor deposition system. The properties (including morphology, structure, composition, photoluminescence, etc.) of the synthesized nitrogenated carbon nanotips are investigated using advanced characterization tools. The room-temperature photoluminescence measurements show that the nitrogenated carbon nanotips can generate two distinct broad emissions located at ∼405 and ∼507 nm, respectively. Through the detailed analysis, it is shown that these two emission bands are attributed to the transition between the lone pair valence and bands, which are related to the sp3 and sp2 C-N bonds, respectively. These results are highly relevant to advanced applications of nitrogenated carbon nanotips in light emitting optoelectronic devices.