180 resultados para chalcogenide


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The carrier type reversal (CTR) from p- to n-type in semiconducting chalcogenide glasses is an important and a long standing problem in glass science. Ge-Se glasses exhibit CTR when the metallic elements Bi and Pb are added. For example, bulk Ge42-xSe58Pbx glasses exhibit CTR around 8-9 at. % of Pb. These glasses have been prepared by melt quenching method. Glass transition temperature (T-g), Specific heat change between the liquid and the glassy states (Delta C-p) at T-g and the nonreversing heat flow (Delta H-nr) measured by modulated differential scanning calorimetry exhibit anomalies at 9 at. % of Pb. These observed anomalies are interpreted on the basis of the nano scale phase separation occurring in these glasses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the synthesis and properties of sphere-shaped microscale aggregates of bismuth telluride nanoplates. We obtain porous microspheres by reducing bismuth chloride and orthotelluric acid with hydrazine in the presence of thioglycolic acid-which serves as the shape-and size-directing agent-followed by room-temperature aging-which promotes nanoplate aggregation. Thin film assemblies of the nanoplate microspheres exhibit n-type behavior due to sulfur doping and a Seebeck coefficient higher than that reported for assemblies of chalcogenide nanostructures. Adaptation of our scalable approach to synthesize and hierarchically assemble nanostructures with controlled doping could be attractive for tailoring novel thermoelectric materials for applications in high-efficiency refrigeration and harvesting electricity from heat.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been established by photoemission studies that Ge in obliquely deposited pure Ge and Ge-chalcogenide thin films undergoes predominant photooxidation when irradiated with band gap photons. The role of Ge appears to be that of providing a highly porous low density microstructure and photooxidation seems to be a direct consequence of such large scale porosity in these films. The formation of low vapour pressure oxide fractions of Ge and Te and volatile high vapour pressure oxide fractions of S and Se is responsible for anomalous photoinduced transformations in these films.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microwave switches operating in the X band were designed and fabricated using amorphous chalcogenide semiconductors of composition GexTeyAsz. Threshold devices were shown to operate as microwave modulators at modulation frequencies of up to 100 MHz. No delay time was observed at the highest frequency although the modulation efficiency decreased above 10 MHz owing to the finite recovery time which was approximately 0.3 × 10−8s. The devices can also be used as variolossers, the insertion loss being 0.5 dB in the OFF state and increasing on switching from 5 dB at 1 mA device current to 18 dB at 100 mA.The behaviour of the threshold switches can be explained in terms of the formation of a conducting filament in the ON state with a constant current density of 2 × 104Acm−2 that is shunted by the device capacitance. The OFF state conductivity σ varies as ωn (0.5 < n < 1) which is characteristic of hopping in localized states. However, there was evidence of a decrease in n or a saturation of the conductivity at high frequencies.As a result of phase separation memory switches require no holding current in the ON state and may be used as novel latching semiconductor phase-shifters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The local structural order in chalcogenide network glasses is known to change markedly at two critical compositions, namely, the percolation and chemical thresholds. In the AsxTe100-x glassy system, both the thresholds coincide at the composition x = 40 (40 at. % of arsenic). It is demonstrated that the electrical switching fields of As-Te glasses exhibit a distinct change at this composition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrical resistivity measurements have been carried out on bulk Ge-Te-Se glasses in a Bridgman anvil System. The resistivity of the Ge-Te-Se samples is found to decrease continuously with increasing pressure, with the metallization occurring around 8 GPa. Ge20TexSe80-x glasses (10 less than or equal to x less than or equal to 50) with the mean co-ordination number Z(av) = 2.4 exhibit a plateau in resistivity up to about 4 GPa pressure, followed by a continuous decrease to metallic values. On the other hand, Ge10TexSe90-x glasses (10 less than or equal to x less than or equal to 40) having Z(av) = 2.2, exhibit a smaller plateau (only up to 1 GPa), followed by a decrease in resistivity with pressure. This subtle difference in the high pressure resistivity of Ge-Te-Se glasses with Z(av) < 2.4 and Z(av) greater than or equal to 2.4 can be associated with the changes in the local structure of the chalcogenide glasses with composition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chalcogenide glasses with compositions Ge7.5AsyTe92.5-y (y = 20, 40, 45, 47.5, 50, 52.5, 55) and Ge10AsyTe90-y (y = 15, 20, 22.5, 35, 40, 45, 50) have been prepared by the melt-quenching technique. The amorphous nature of these glasses has been confirmed by X-ray powder diffractometry. The thermal stability of these glasses has been studied using differential scanning calorimetry (DSC). The compositional dependence of the glass transition temperature, T(g), the crystallization temperatures, T(c1) and T(c2), and the melting temperature, T(m), are reported. The glass-forming tendency, K(gl), and the activation energy of crystallization, E, are calculated. The activation energy decreases with increasing tellurium content for both sets of glasses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report a dramatic change in effective three-photon absorption coefficient of amorphous Ge16As29Se55 thin films, when its optical band gap decreases by 10 meV with 532 nm light illumination. This large change provides valuable information on the higher excited states, which are otherwise inaccessible via normal optical absorption. The results also indicate that photodarkening in chalcogenide glasses can serve as an effective tool to tune the multiphoton absorption in a rather simple way. (C) 2011 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A long-standing and important problem in glass science has been carrier-type reversal (CTR) in semiconducting glasses. This phenomenon is exhibited by Pb-Ge-Se glasses also. It has been addressed here by carrying out detailed electrical, thermal, and spectroscopic investigations. PbxGe42-xSe58 (x = 0-20) glasses were prepared by a two stage melt-quenching process and characterized using x-ray diffraction, high-resolution electron microscropy, and energy dispersive analysis of x-rays. Thermoelectric power and high-pressure electrical resistivity have been measured. IR, Raman, and X-ray adsorption near edge structure spectroscopies have been used for examining the glass structures as well as differential scanning calorimetry (DSC) for studying the thermal properties. A structural model based on the chemical nature of the constituents has been proposed to account for the observed properties of these glasses. Effect of Pb incorporation on local structures and qualitative consequences on the energy band structures of Ge-Se glasses has been considered. The p -->n transition has been attributed to the energetic disposition of the sp(3)d(2) band of Pb atoms, which is located closely above the lone pair band of selenium. This feature makes Pb unique in the context of p -->n transition of chalcogenide glasses. The model can be extended successfully to account for the CTR behavior observed in Bi containing chalcogenide glasses also.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanocomposites of few-layer graphene with nanoparticles of CdSe and CdS have been synthesized by two different methods, one involving ultrasonication of a mixture of graphene and the chalcogenide nanoparticles, and another involving assembly at the organic-aqueous interface. The nanocomposites have been examined by electron microscopy, electronic absorption and photoluminescence spectroscopies as well as Raman spectroscopy. Electron microscopy reveals that the nanoparticles are dispersed on the graphene surface. Raman spectra show the presence of definitive electronic interaction between the nanoparticles and graphene depending on the capping agent. Photoluminescence spectra are markedly influenced by the interaction of the nanoparticles with the graphene surface, depending on the capping agent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An interesting topic for quite some time is an intermediate phase observed in chalcogenide glasses, which is related to network connectivity and rigidity. This phenomenon is exhibited by Si-Te-In glasses also. It has been addressed here by carrying out detailed thermal investigations by using Alternating Differential Scanning Calorimetry technique. An effort has also been made to determine the stability of these glasses using the data obtained from different thermodynamic quantities and crystallization kinetics of these glasses. Electrical switching behavior by recording I-V characteristics and variation of switching voltages with indium composition have been studied in these glasses for phase change memory applications. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optical parameters of chalcogenide glass multilayers with 12–15 nm modulation lengths prepared by thermal evaporation can be changed by laser irradiation. Photoluminescence (PL) studies were carried out on such nonirradiated and irradiated multilayered samples of a-Se/As2S3 (sublayer thickness of a-Se is 4–5 nm for one set of samples and 1–2 nm for the other set. However As2S3 sublayer thickness is 11–12 nm for both sets of samples.) PL intensity can be increased by several orders of magnitude by reducing the Se well layer (lower band gap) thickness and can be further increased by irradiating the samples with appropriate wavelengths in the range of the absorption edge. The broadening of luminescence bands takes place either with a decrease in Se layer thickness or with irradiation. The former is due to the change in interface roughness and defects because of the enhanced structural disorder while the latter is due to photoinduced interdiffusion. The photoinduced interdiffusion creates defects at the interface between Se and As2S3 by forming an As–Se–S solid solution. From the deconvoluted PL spectrum, it is shown that the peak PL intensity, full width half maximum, and the PL quantum efficiency of particular defects giving rise to PL, can be tuned by changing the sublayer thickness or by interdiffusion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Semiconducting chalcogenide glasses in the systems GeSe and GeSeTe with the addition of bismuth show unusual phenomena of p - to - n transition. Samples for characterization were prepared in bulk form by melt-quenching technique, with increasing Bi at. % to replace selenium. Photoluminescence (PL) spectroscopic studies on all the samples were carried out at 4.2K using an Ar-Ion laser for illuminating the samples. The laser power used was 200mw. Both the systems show a decrease in the intensity of PL signal with increasing Bi content. This interesting behavior is discussed on the basis of a charged defect model for chalcogenide glasses, proposed by Mott, Davis and Street (MDS). The effect of bismuth addition on these charged defects is also discussed to explain the carrier type reversal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the results of the electrical switching studies performed on the bulk Al20GexTe80-x (2.5 less than or equal to x less than or equal to 15) chalcogenide glasses. The well known topological features, mechanical and chemical thresholds are observed. Mechanical threshold is seen at a mean coordination number of atoms, < r > = 2.50 (x = 5) a clear shift rom the mean field value of < r > = 2.4 whereas the chemical threshold is observed at < r > = 2.65 (x = 12.5) as predicted by the chemically ordered covalent network model These experiments are a sequel to similar experiments on Al20AsxTe80-x glasses in which mechanical threshold was seen at < r > = 2.60 and no chemical threshold was observed These results am well understood by a chemical bond picture developed in this article.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amorphous thin film Ge15Te85-xSnx (1 <= x <= 5) and Ge17Te83-xSnx (1 <= x <= 4) switching devices have been deposited in sandwich geometry using a flash evaporation technique, with aluminum as the top and bottom electrodes. Electrical switching studies indicate that these films exhibit memory type electrical switching behavior. The switching fields for both the series of samples have been found to decrease with increase in Sn concentration, which confirms that the metallicity effect on switching fields/voltages, commonly seen in bulk glassy chalcogenides, is valid in amorphous chalcogenide thin films also. In addition, there is no manifestation of rigidity percolation in the composition dependence of switching fields of Ge15Te85-xSnx and Ge17Te83-xSnx amorphous thin film samples. The observed composition dependence of switching fields of amorphous Ge15Te85-xSnx and Ge17Te83-xSnx thin films has been understood on the basis of Chemically Ordered Network model. The optical band gap for these samples, calculated from the absorption spectra, has been found to exhibit a decreasing trend with increasing Sn concentration, which is consistent with the composition dependence of switching fields.