817 resultados para cellulose nanofiber


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel lower critical solution temperature (LCST) membrane forming system containing cellulose acetate (CA)/poly (vinyl pyrrolidone) (PVP 3 60K)/N-methyl-2-pyrrolidone (NMP)/1,2-propanediol with a weight ratio of 24.0:5.0:62.6:8.4 had been developed. CA hollow fiber ultrafiltration (UF) membranes were fabricated using the dry-wet spinning technique. The fibers were post-treated with a 200 mg/L hypochlorite solution over a period of 6 It at pH 7. The experimental results showed that water flux of a membrane decreased while retention increased with increasing CA concentration in a dope. It was concluded that the membrane pore size decreased with increasing CA concentration. The membrane fouling tendency for BSA was 3 times higher than that for PVP 24K. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The classical method for preparation of covalently boned cellulose derivative chiral stationary phases (CSP) with diisocyanate as spacer was improved. Diisocyanate was firstly allowed to react with 3-aminopropyltriethoxysilane, and the resulting product was then applied as the spacer reagent to immobilize cellulose derivatives onto silica gel. Influences of the amount and the length of the spacer on the optical resolution ability of the CSP were investigated. Comparing improved procedure to classical diisocyanate method, the cross-linking between the glucose units of the cellulose derivatives was avoided to the most extent. With the improved procedure, regio-nonselective ways could be adopted to prepare covalently bonded CSP, which showed an advantage for the rapid preparation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A key element in the rational design of hybrid organic-inorganic nanostructures, is control of surfactant packing and adsorption onto the inorganic phase in crystal growth and assembly. In layered single crystal nanofibers and bilayered 2D nanosheets of vanadium oxide, we show how the chemisorption of preferred densities of surfactant molecules can direct formation of ordered, curved layers. The atom-scale features of the structures are described using molecular dynamics simulations that quantify surfactant packing effects and confirm the preference for a density of 5 dodecanethiol molecules per 8 vanadium attachment sites in the synthesised structures. This assembly maintains a remarkably well ordered interlayer spacing, even when curved. The assemblies of interdigitated organic bilayers on V2O5 are shown to be sufficiently flexible to tolerate curvature while maintaining a constant interlayer distance without rupture, delamination or cleavage. The accommodation of curvature and invariant structural integrity points to a beneficial role for oxide-directed organic film packing effects in layered architectures such as stacked nanofibers and hybrid 2D nanosheet systems.