981 resultados para cellular transport system


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bacterial DNA activates mouse macrophages, B cells, and dendritic cells in a TLR9-dependent manner. Although short ssCpG-containing phosphodiester oligonucleotides (PO-ODN) can mimic the action of bacterial DNA on macrophages, they are much less immunostimulatory than Escherichia coli DNA. In this study we have assessed the structural differences between E. coli DNA and PO-ODN, which may explain the high activity of bacterial DNA on macrophages. DNA length was found to be the most important variable. Double-strandedness was not responsible for the increased activity of long DNA. DNA adenine methyltransferase (Dam) and DNA cytosine methyltransferase (Dcm) methylation of E. coli DNA did not enhance macrophage NO production. The presence of two CpG motifs on one molecule only marginally improved activity at low concentration, suggesting that ligand-mediated TLR9 cross-linking was not involved. The major contribution was from DNA length. Synthetic ODN > 44 nt attained the same levels of activity as bacterial DNA. The response of macrophages to CpG DNA requires endocytic uptake. The length dependence of the CpG ODN response was found to correlate with the presence in macrophages of a length-dependent uptake process for DNA. This transport system was absent from B cells and fibroblasts.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recently identified genes located downstream (3') of the msmEF (transport encoding) gene cluster, msmGH, and located 5' of the structural genes for methanesulfonate monooxygenase (MSAMO) are described from Methylosulfonomonas methylovora. Sequence analysis of the derived polypeptide sequences encoded by these genes revealed a high degree of identity to ABC-type transporters. MsmE showed similarity to a putative periplasmic substrate binding protein, MsmF resembled an integral membraneassociated protein, and MsmG was a putative ATP-binding enzyme. MsmH was thought to be the cognate permease component of the sulfonate transport system. The close association of these putative transport genes to the MSAMO structural genes msmABCD suggested a role for these genes in transport of methanesulfonic acid (MSA) into M. methylovora. msmEFGH and msmABCD constituted two operons for the coordinated expression of MSAMO and the MSA transporter systems. Reverse-transcription-PCR analysis of msmABCD and msmEFGH revealed differential expression of these genes during growth on MSA and methanol. The msmEFGH operon was constitutively expressed, whereas MSA induced expression of msmABCD. A mutant defective in msmE had considerably slower growth rates than the wild type, thus supporting the proposed role of MsmE in the transport of MSA into M. methylovora.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Many of the recent improvements in the capacity of data cartridge systems have been achieved through the use of narrower tracks, higher linear densities and continuous servo tracking with multi-channel heads. These changes have produced new tribological problems at the head/tape interface. It is crucial that the tribology of such systems is understood and this will continue since increasing storage capacities and faster transfer rates are constantly being sought. Chemical changes in the surface of single and dual layer MP tape have been correlated to signal performance. An accelerated tape tester, consisting of a custom made cycler ("loop tester"), was used to ascertain if results could be produced that were representative of a real tape drive system. A second set of experiments used a modified tape drive (Georgens cycler), which allowed the effects of the tape transport system on the tape surface to be studied. To isolate any effects on the tape surface due to the head/tape interface, read/write heads were not fitted to the cycler. Two further sets of experiments were conducted which included a head in the tape path. This allowed the effects of the head/tape interface on the physical and chemical properties of the head and tape surfaces to be investigated. It was during the final set of experiments that the effect on the head/tape interface, of an energised MR element, was investigated. The effect of operating each cycler at extreme relative humidity and temperature was investigated through the use of an environmental chamber. Extensive use was made of surface specific analytical techniques such as XPS, AFM, AES, and SEM to study the physical and chemical changes that occur at the head/tape interface. Results showed that cycling improved the signal performance of all the tapes tested. The data cartridge drive belt had an effect on the chemical properties of the tape surface on which it was in contact. Also binder degradation occurred for each tape and appeared to be greater at higher humidity. Lubricant was generally seen to migrate to the tape surface with cycling. Any surface changes likely to affect signal output occurred at the head surface rather than the tape.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The binding of iron (59Fe) and gallium (67Ga) to the plasma protein transferrin (Tf) was investigated by G75 gel filtration chromatography in control patients and treated and untreated patients with Parkinson's disease (PD). Fe-Tf binding was 100% in all controls and PD patients suggesting that a defect in Fe-Tf binding was not involved in the aetiology of PD. Ga-Tf binding was significantly reduced in both untreated and treated PD patients compared to controls. In addition, treated PD patients had significantly higher Ga-Tf binding than untreated patients. A reduction in metal binding to Tf could result in the increase of a low molecular weight species which may more readily enter the CNS. Alternatively, it could lead to a decrease in the transport of essential metals into the brain via the Tf receptor system. A significant elevation in neopterin was demonstrated within the plasma of untreated PD patients compared to controls suggesting the activation of a cellular immune response. Furthermore, plasma neopterin was lower in treated compared to untreated PD patients, although the difference was not significant. There was no evidence for the activation of the humoral immune response in untreated or treated PD patients as measured by circulating immune complex (CIC) levels within the plasma. An inverse relationship between Ga-Tf binding and neopterin was observed in untreated PD patients. The addition of oxidants in the form of potassium permanganate and activated manganese dioxide reduced Ga-Tf binding in control plasma. However, relatively little response was observed using monocyte preparations. The results suggest that oxidants produced by activation of the cellular immune system could damage the Tf molecule thereby reducing its ability to bind metals.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Immunity is broadly defined as a mechanism of protection against non-self entities, a process which must be sufficiently robust to both eliminate the initial foreign body and then be maintained over the life of the host. Life-long immunity is impossible without the development of immunological memory, of which a central component is the cellular immune system, or T cells. Cellular immunity hinges upon a naïve T cell pool of sufficient size and breadth to enable Darwinian selection of clones responsive to foreign antigens during an initial encounter. Further, the generation and maintenance of memory T cells is required for rapid clearance responses against repeated insult, and so this small memory pool must be actively maintained by pro-survival cytokine signals over the life of the host.

T cell development, function, and maintenance are regulated on a number of molecular levels through complex regulatory networks. Recently, small non-coding RNAs, miRNAs, have been observed to have profound impacts on diverse aspects of T cell biology by impeding the translation of RNA transcripts to protein. While many miRNAs have been described that alter T cell development or functional differentiation, little is known regarding the role that miRNAs have in T cell maintenance in the periphery at homeostasis.

In Chapter 3 of this dissertation, tools to study miRNA biology and function were developed. First, to understand the effect that miRNA overexpression had on T cell responses, a novel overexpression system was developed to enhance the processing efficiency and ultimate expression of a given miRNA by placing it within an alternative miRNA backbone. Next, a conditional knockout mouse system was devised to specifically delete miR-191 in a cell population expressing recombinase. This strategy was expanded to permit the selective deletion of single miRNAs from within a cluster to discern the effects of specific miRNAs that were previously inaccessible in isolation. Last, to enable the identification of potentially therapeutically viable miRNA function and/or expression modulators, a high-throughput flow cytometry-based screening system utilizing miRNA activity reporters was tested and validated. Thus, several novel and useful tools were developed to assist in the studies described in Chapter 4 and in future miRNA studies.

In Chapter 4 of this dissertation, the role of miR-191 in T cell biology was evaluated. Using tools developed in Chapter 3, miR-191 was observed to be critical for T cell survival following activation-induced cell death, while proliferation was unaffected by alterations in miR-191 expression. Loss of miR-191 led to significant decreases in the numbers of CD4+ and CD8+ T cells in the periphery lymph nodes, but this loss had no impact on the homeostatic activation of either CD4+ or CD8+ cells. These peripheral changes were not caused by gross defects in thymic development, but rather impaired STAT5 phosphorylation downstream of pro-survival cytokine signals. miR-191 does not specifically inhibit STAT5, but rather directly targets the scaffolding protein, IRS1, which in turn alters cytokine-dependent signaling. The defect in peripheral T cell maintenance was exacerbated by the presence of a Bcl-2YFP transgene, which led to even greater peripheral T cell losses in addition to developmental defects. These studies collectively demonstrate that miR-191 controls peripheral T cell maintenance by modulating homeostatic cytokine signaling through the regulation of IRS1 expression and downstream STAT5 phosphorylation.

The studies described in this dissertation collectively demonstrate that miR-191 has a profound role in the maintenance of T cells at homeostasis in the periphery. Importantly, the manipulation of miR-191 altered immune homeostasis without leading to severe immunodeficiency or autoimmunity. As much data exists on the causative agents disrupting active immune responses and the formation of immunological memory, the basic processes underlying the continued maintenance of a functioning immune system must be fully characterized to facilitate the development of methods for promoting healthy immune function throughout the life of the individual. These findings also have powerful implications for the ability of patients with modest perturbations in T cell homeostasis to effectively fight disease and respond to vaccination and may provide valuable targets for therapeutic intervention.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Laboratory culture experiments were conducted to determine effects of seawater carbonate ion concentration ([CO32-]), and thereby calcite saturation state, on Mg and Sr incorporation into calcite of two species of shallow-water benthic foraminifera: Ammonia tepida and Heterostegina depressa. Impact on Mg and Sr incorporation by increased seawater [CO32-] and thereby higher calcite saturation state, is absent in either species. Comparison to results from a similar culturing experiment, in which calcite saturation state was varied as a function of [Ca2+], reveals that saturation state affects incorporation of Mg and Sr through calcium- rather than carbonate availability. The similarity in response by both species is surprising since the average Mg/Ca ratio is ~ 70 times higher in H. depressa than in A. tepida. Furthermore, these results suggest that the ions involved in biomineralization (i.e. Ca2+ and DIC) are processed by separate cellular transport mechanisms. The similar response of Mg and Sr incorporation in this study suggests that only differences in the Ca2+ transport mechanism affect divalent cation partitioning.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The first topic area of this thesis involved studies on the accumulation and translocation of glucosinolates (GSs), bioactive secondary plant compounds, in broccoli plants. Changes in GS accumulation and gene expression levels in response to exogeneous methyl jasmonate (MeJA) treatment were analyzed in different tissue types at different developmental stages of broccoli. Greater accumulation of GSs with MeJA treatment was observed in apical leaves of broccoli seedlings and florets of plants at harvest maturity. Increases in indolyl GS in apical leaves of seedlings and florets were coupled with the up-regulation of indolyl GS biosynthesis genes. The accumulation of indolyl GSs appears to be modulated by MeJA treatment in an organ-specific manner for optimal distribution of defense substances in the plant. Metabolic profiling of hydrophilic metabolites using GC-MS demonstrated increased accumulation of various phenolics, ascorbates and amino acids in broccoli tissues after MeJA treatment. Distinct changes in carbohydrate levels observed between different tissues (vegetative leaves and floret tissues) of broccoli plants after treatment suggest that carbon metabolism is differentially modulated by MeJA treatment in different tissue types depending on sink-source relationships. Reduced levels of hexose sugars and tricarboxylic acid intermediates after MeJA treatment may reflect the increased requirement for carbon and energy needed to drive secondary product biosynthesis to accumulate metabolites for defense against insects and other herbivores. Substantial increases of indolyl and aromatic GSs after exogenous treatment with MeJA in stem and petioles of seedlings and the existence of intact indolyl-GS forms in phloem exudates suggest enhanced de novo synthesis in combination with active transport. Indoly GSs share structural similarities with the auxin, IAA, and may interact with components of the auxin transport system for intra- and extra-cellular transport or translocation. Application of the auxin efflux inhibitor, 1-naphthylphthalamic acid (NPA) reduced MeJA-mediated accumulation of indolyl GSs in broccoli florets and seedling tissues. NPA did not inhibit expression of indolyl GS biosynthesis genes shown to be upregulated by MeJA treatment or the accumulation of tryptophan, the amino acid precursor of indolyl GSs. Exogenous application of benzyl GS to Arabidopsis roots induced ectopic expression of the PIN1 protein associated with the auxin transport system similar to treatment with NPA, again suggesting GS interaction with the auxin efflux carrier system. The inhibitory effect of NPA on MeJA-mediated accumulation of GS may be due to competitive binding of NPA to auxin efflux carrier components and that GS transport is mediated by the auxin transport system. The inhibitory effect of NPA on indolyl and aromatic GS accumulation and the bioactivity of exogenous treatment of these GS compounds in PIN1 localization, Arabidopsis root growth, and gravitrophic response suggest that indolyl and aromatic GSs may be antagonistic to IAA transport and biosynthesis. Indolyl and aromatic GSs can also be potentially converted into IAA by hydrolysis. This intrinsic feature of GSs may be the part of a sophisticated regulatory process where the metabolic pathways in the plant shift from active growth to a reversible defense posture in response to biotic or abiotic stress. It seems likely that indolyl and aromatic GSs are important compounds that provide connections between jasmonate and auxin signaling. Further studies are required to reveal the regulatory mechanism for crosstalk between the two hormones. The third part of this research was to investigate effect of selenium fertilization and MeJA treatment on accumulation of GSs in broccoli florets. Increasing dietary intake of the element selenium (Se) has been shown to reduce the risk of cancer. Simultaneous enhancement of both Se and GS concentrations in broccoli floret tissue were conducted through the combined treatment of MeJA with Se fertilization. A low level of Se fertilization (concentration) with MeJA treatment displayed no significant changes in total aliphatic GS concentrations with 90% and 50% increases in indolyl and total GSs concentrations, respectively. This result suggests that Se- and GS-enriched broccoli with improved health-promoting properties can be generated by this combined treatment. The second topic of this thesis was conducted to provide basic information required to improve biomass quality and productivity and develop tools for gene transformation in Miscanthus x giganteus. The perennial rhizomatous grass, Miscanthus x giganteus is an ideal biomass crop due to its rapid vegetative growth and high biomass yield potential. As a naturally occurring sterile hybrid, M. x giganteus must be propagated vegetatively by mechanicalling divided rhizomes or from micropropagated plantlets. The effect of callus type, age and culture methods on regeneration competence was studied to improve regeneration efficiency and shorten the period of tissue culture in M. x giganteus propagation. Seven lignin biosynthesis genes and one putative flowering gene were isolated from M. x giganteus by PCR reactions using maize othologous sequences. Southern hybridization and nuclear DNA content analysis indicated that the genes isolated from M. x giganteus exist in the genome of other Miscanthus species as multiple copies. Analysis of lignin content and histological staining of lignin deposition indicated that higher lignin content is found in mature stem node tissues compared to young leaves and apical stem nodal tissues. Cell wall lignification is associated with increasing tissue maturity in Miscanthus species. RNAi and antisense constructs harboring sequences of these genes were developed to generate Miscanthus transgenic plants with suppressed of lignin biosynthesis and delayed flowering.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The mitochondrial NADH dehydrogenase complex (complex I) is of particular importance for the respiratory chain in mitochondria. It is the major electron entry site for the mitochondrial electron transport chain (mETC) and therefore of great significance for mitochondrial ATP generation. We recently described an Arabidopsis thaliana double-mutant lacking the genes encoding the carbonic anhydrases CA1 and CA2, which both form part of a plant-specific 'carbonic anhydrase domain' of mitochondrial complex I. The mutant lacks complex I completely. Here we report extended analyses for systematically characterizing the proteome of the ca1ca2 mutant. Using various proteomic tools, we show that lack of complex I causes reorganization of the cellular respiration system. Reduced electron entry into the respiratory chain at the first segment of the mETC leads to induction of complexes II and IV as well as alternative oxidase. Increased electron entry at later segments of the mETC requires an increase in oxidation of organic substrates. This is reflected by higher abundance of proteins involved in glycolysis, the tricarboxylic acid cycle and branched-chain amino acid catabolism. Proteins involved in the light reaction of photosynthesis, the Calvin cycle, tetrapyrrole biosynthesis, and photorespiration are clearly reduced, contributing to the significant delay in growth and development of the double-mutant. Finally, enzymes involved in defense against reactive oxygen species and stress symptoms are much induced. These together with previously reported insights into the function of plant complex I, which were obtained by analysing other complex I mutants, are integrated in order to comprehensively describe 'life without complex I'.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Buses are considered a slow, low comfort and low reliability transport system, thus its negative and por image. In the framework of the 3iBS project (2012), several examples of innovative and/or effective solutions regarding the Level of Service (LoS) were analysed aiming to provide operators, practitioners and policy makers with a set of Good Practice Guidelines to strengthen the competitiveness of the bus in the urban environment. The identification of the key indicators regarding vehicles, infrastructure and operation was possible through the analysis of a set of case studies -among which Barcelona (Spain), Cagliari (Italy), London (United Kingdom), Paris and Nantes (France). A cross comparison between the case studies was carried out for contrasting the level of achievement of the different criteria considered. The information provided on Regulatory, Financial and Technical issues allows the identification of a number of specific factors influencing the implementation of a high quality transport scheme, and set the basis for the elaboration of a set of Guidelines for the implementation of an intelligent, innovative and integrated bus system, including the main barriers to be tackled.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Perceived accessibility has been acknowledged as an important aspect of transport policy since the 70s. Nevertheless, very few empirical studies have been conducted in this field. When aiming to improve social inclusion, by making sus-tainable transport modes accessible to all, it is important to understand the factors driving perceived accessibility. Un-like conventional accessibility measures, perceived accessibility focuses on the perceived possibilities and ease of en-gaging in preferred activities using different transport modes. We define perceived accessibility in terms of how easy it is to live a satisfactory life with the help of the transport system, which is not necessarily the same thing as the objec-tive standard of the system. According to previous research, perceived accessibility varies with the subjectively-rated quality of the mode of transport. Thus, improvements in quality (e.g. trip planning, comfort, or safety) increase the per-ceived accessibility and make life easier to live using the chosen mode of transport. This study (n=750) focuses on the perceived accessibility of public transport, captured using the Perceived Accessibility Scale PAC (Lättman, Olsson, & Fri-man, 2015). More specifically, this study aims to determine how level of quality affects the perceived accessibility in public transport. A Conditional Process Model shows that, in addition to quality, feeling safe and frequency of travel are important predictors of perceived accessibility. Furthermore, elderly and those in their thirties report a lower level of perceived accessibility to their day-to-day activities using public transport. The basic premise of this study is that sub-jective experiences may be as important as objective indicators when planning and designing for socially inclusive transport systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mathematical models and the involved methods applied to real contexts are essential tools for designing and evaluating solutions concerning physical elements and/or organizational components of transportation systems. To deal with this, the systems engineering approach is used, which considers the relationships among the transportation system elements and their performances. This approach allows quantifying the effects of transportation projects by taking into account the intrinsic complexity of the transportation system and then assessing the effects of solutions to solve – or mitigate – transportation problems. This thesis focuses on the application of the transport system engineering approach to a real city – Bologna, in northern Italy – in order to: 1. simulate the current transportation system conditions (status quo); 2. compare and assess the results obtained by two different approaches for simulating the link traffic flows on the road transportation network and their related impacts (externalities) 3. identify potential solutions to solve critical aspects, particularly in terms of traffic flow congestion and related environmental impacts (findings)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stevia rebaudiana, a South American plant normally used as a natural herbal sweetener, has been suggested as exerting beneficial effects on human health, including as an antihypertensive and antihyperglycemic. The present experiment was undertaken to evaluate the renal excretion of steviol, the aglycone of several natural products extracted from the leaves of S. rebaudiana, and to clarify the actual participation of this compound on the renal excretion of glucose in rats, which has been previously suggested as the preferential action of steviol on the Na+-glucose renal tubular transport system. Steviol was obtained by enzymatic hydrolysis of stevioside with pectinase. Thirty normal male Wistar rats weighing 345 g were used. After a control period, steviol was infused iv at three doses (0.5, 1.0 and 3.0 mg.kg-1/h), according to classical clearance techniques. During all the experiments no significant changes in inulin clearance (Cin) and p-aminohipuric acid clearance (C PAH) were observed. Administration of steviol resulted in a statistically significant increase in the fractional sodium excretion (FeNa+), fractional potassium excretion (FeK+), urinary flow as percent of glomerular filtration rate (V/GFR) and glucose clearance (C G) when compared to controls, but these effects were absent with the dose of 0.5 mg.kg-1/h. The steviol clearance (C S) was higher than the Cin and lower than the C PAH at all the doses employed in this study. The data suggest that steviol is secreted by renal tubular epithelium, causing diuresis, natriuresis, kaliuresis and a fall in renal tubular reabsorption of glucose.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Harmless bacteria inhabiting inner plant tissues are termed endophytes. Population fluctuations in the endophytic bacterium Pantoea agglomerans associated with two species of field cultured citrus plants were monitored over a two-year period. The results demonstrated that populations of P. agglomerans fluctuated in Citrus reticulata but not C. sinensis. A cryptic plasmid pPA3.0 (2.9 kb) was identified in 35 out of 44 endophytic isolates of P. agglomerans and was subsequently sequenced. The origins of replication were identified and nine out of 18 open reading frames (ORFs) revealed homology with described proteins. Notably, two ORFs were related to cellular transport systems and plasmid maintenance. Plasmid pPA3.0 was cloned and the gfp gene inserted to generate the pPAGFP vector. The vector was introduced into P. agglomerans isolates and revealed stability was dependent on the isolate genotype, ninety-percent stability values were reached after 60 hours of bacterial cultivation in most evaluated isolates. In order to definitively establish P. agglomerans as an endophyte, the non-transformed bacterium was reintroduced into in vitro cultivated seedlings and the density of inner tissue colonization in inoculated plants was estimated by bacterium re-isolation, while the tissue niches preferred by the bacterium were investigated by scanning electronic microscopy (SEM). Cells from P. agglomerans (strain ARB18) at similar densities were re-isolated from roots, stems and leaves and colonization of parenchyma and xylem tissues were observed. Data suggested that P. agglomerans is a ubiquitous citrus endophyte harboring cryptic plasmids. These characteristics suggest the potential to use the bacterium as a vehicle to introduce new genes in host plants via endophytic bacterial transformation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Natural killer (NK) cells are an important component of the innate cellular immune system. They are particularly important during the early immune responses following virus infection, prior to the induction of cytotoxic T cells (CTL). Unlike CTL, which recognize specific peptides displayed on the surface of cells by class I MHC, NK cells respond to aberrant expression of cell surface molecules, in particular class I MHC, in a non-specific manner. Thus, cells expressing low levels of surface class I MHC are susceptible to recognition by NK cells, with concomitant triggering of cytolytic and cytokine-mediated responses. Many viruses, including the cytomegaloviruses, downregulate cell surface MHC class I: this is likely to provide protection against CTL-mediated clearance of infected cells, but may also render infected cells sensitive to NK-cell attack. This review focuses upon cytomegalovirus-encoded proteins that are believed to promote evasion of NK-cell-mediated immunity. The class I MHC homologues, encoded by all cytomegaloviruses characterised to date, have been implicated as molecular 'decoys', which may mimic the ability of cellular MHC class I to inhibit NK-cell functions. Results from studies in vitro are not uniform, but in general they support the proposal that the class I homologues engage inhibitory receptors from NK cells and other cell types that normally interact with cellular class I. Consistent with this, in vivo studies of murine cytomegalovirus indicate that the class I homologue is required for efficient evasion of NK-cell-mediated clearance. Recently a second murine cytomegalovirus protein, a C-C chemokine homologue, has been implicated as promoting evasion of NK and T-cell-mediated clearance in vivo.