987 resultados para cell-permeability


Relevância:

30.00% 30.00%

Publicador:

Resumo:

4HPR is a synthetic retinoid that has shown chemopreventive and therapeutic efficacy against premalignant and malignant lesions including oral leukoplakia, ovarian and breast cancer and neuroblastoma in clinical trials. 4HPR induces growth inhibition and apoptosis in various cancer cells including head and neck squamous cell carcinoma (HNSCC) cells. 4HPR induces apoptosis by several mechanisms including increasing reactive oxygen species (ROS), or inducing mitochondrial permeability transition (MPT). 4HPR has also been shown to modulate the level of different proteins by transcriptional activation or posttranslational modification in various cellular contexts. However, the mechanism of its action is not fully elucidated. In this study, we explored the mechanism of 4HPR-induced apoptosis in HNSCC cells. ^ First, we identified proteins modulated by 4HPR by using proteomics approaches including: Powerblot western array and 2-dimensional polyacrylamide gel electrophoresis. We found that 4HPR modulated the levels of several proteins including c-Jun. Further analysis has shown that 4HPR induced activation of Activator Protein 1 (AP-1) components, c-Jun and ATF-2. We also found that 4HPR increased the level of Heat shock protein (Hsp) 70 and phosphorylation of Hsp27. ^ Second, we found that 4HPR induced prolonged activation of JNK, p38/MAPK and extracellular signal-regulated kinase (ERK). We also demonstrated that the activation of these kinases is required for 4HPR-induced apoptosis. JNK inhibitor SP600125 and siRNA against JNK1 and JNK2 suppressed, while overexpression of JNK1 enhanced 4HPR-induced apoptosis. p38/MAPK inhibitor PD169316 and MEK1/2 inhibitor PD98059 also suppressed 4HPR-induced apoptosis. We also demonstrated that activation of JNK, p38/MAPK and ERK is triggered by ROS generation induced by 4HPR. We also found that translation inhibitor, cycloheximide, suppressed 4HPR-induced apoptosis through inhibition of 4HPR-induced events (e.g. ROS generation, cytochrome c release, JNK activation and suppression of Akt). We also demonstrated that MPT is involved in 4HPR-induced apoptosis. ^ Third, we demonstrated the presence of NADPH oxidase in HNSCC 2B cells. We also found that 4HPR increased the level of the p67phox, a subunit of NADPH oxidase which participates in ROS production and apoptosis induced by 4HPR. ^ The novel insight into the mechanism by which 4HPR induces apoptosis can be used to improve design of future clinical studies with this synthetic retinoid in combination with specific MAPK modulators. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increased dependence on aerobic glycolysis for energy (ATP) supply has been observed in various human cancer cells. It is plausible to exploit this metabolic alteration for therapeutic benefits by inhibiting glycolysis to preferentially abolish cancer energy metabolism and kill the malignant cells. 3-Bromopyruvate has been shown to be a potent inhibitor of glycolysis capable of inducing severe ATP reduction and cell death in various cancer cell lines, especially cancer cells with mitochondrial defects or under hypoxic conditions. However, the detailed mechanisms of this novel anticancer agent still remain unclear. My study demonstrated that 3-Bromopyruvate caused a covalent modification of hexokinase II, a key glycolytic enzyme, and disrupted its association with mitochondria. This led to mitochondrial permeability transition and a substantial release of apoptosis-inducing faction (AIF) prior to cytochrome c release. Dissociation of HK II from mitochondria using a cell permeable specific peptide also induced the release of AIF and cytochrome c, and caused substantial cell death. HK II-targeted peptide did not cause significant change in mitochondria respiration and glycolysis activity, suggesting that dissociation of this molecule from mitochondria alone can also cause cell death, and that this may be a novel mechanism by which 3-Bromopyruvate exerts its potent cytotoxic action, in addition to its inhibition of the enzyme activity. Another significant new discovery was that 3-Bromopyruvate induced rapid reduction of protein ubiquitination in vivo, which occurred within several hours of drug incubation and before ATP reduction and cell death. Further mechanistic studies showed that this was due to the inhibition the ubiquitin activating enzyme E1 and the conjugating enzyme E2. Knocking down ubiquitin protein expression by siRNA did not suppress mitochondria respiration and glycolysis, but caused significant cell death. Taken together, this study demonstrated that induction of HK II dissociation from mitochondria and inhibition of glycolysis are two newly discovered mechanisms that contribute to the potent anticancer activity of 3-Bromopyruvate, and identified this compound as a valuable chemical tool for research in protein ubiquitination. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Permeability measured on three samples in a triaxial cell under effective confining pressure from 0.2 to 2.5 MPa ranges from 10**-18 to 10**-19 m**2. Overall, results indicate that permeability decreases with effective confining pressure up to 1.5 MPa; however, measurements at low effective pressure are too dispersed to yield a precise general relationship between permeability and pressure. When the effective pressure is increased from 1.5 to 2.5 MPa, permeability is roughly constant (~1-4 x 10**-19 m**2). Samples deformed in the triaxial cell developed slickenlined fractures, and permeability measurements were performed before and after failure. A permeability increase is observed when the sample fails under low effective confining pressure (0.2 MPa), but not under effective pressure corresponding to the overburden stress. Under isotropic stress conditions, permeability decrease related to fracture closure occurs at a relatively high effective pressure of ~1.5 MPa. Coefficients of friction on the fractures formed in the triaxial cell are ~0.4.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The blood–brain barrier and a blood–cerebrospinal-fluid (CSF) barrier function together to isolate the brain from circulating drugs, toxins, and xenobiotics. The blood–CSF drug-permeability barrier is localized to the epithelium of the choroid plexus (CP). However, the molecular mechanisms regulating drug permeability across the CP epithelium are defined poorly. Herein, we describe a drug-permeability barrier in human and rodent CP mediated by epithelial-specific expression of the MDR1 (multidrug resistance) P glycoprotein (Pgp) and the multidrug resistance-associated protein (MRP). Noninvasive single-photon-emission computed tomography with 99mTc-sestamibi, a membrane-permeant radiopharmaceutical whose transport is mediated by both Pgp and MRP, shows a large blood-to-CSF concentration gradient across intact CP epithelium in humans in vivo. In rats, pharmacokinetic analysis with 99mTc-sestamibi determined the concentration gradient to be greater than 100-fold. In membrane fractions of isolated native CP from rat, mouse, and human, the 170-kDa Pgp and 190-kDa MRP are identified readily. Furthermore, the murine proteins are absent in CP isolated from their respective mdr1a/1b(−/−) and mrp(−/−) gene knockout littermates. As determined by immunohistochemical and drug-transport analysis of native CP and polarized epithelial cell cultures derived from neonatal rat CP, Pgp localizes subapically, conferring an apical-to-basal transepithelial permeation barrier to radiolabeled drugs. Conversely, MRP localizes basolaterally, conferring an opposing basal-to-apical drug-permeation barrier. Together, these transporters may coordinate secretion and reabsorption of natural product substrates and therapeutic drugs, including chemotherapeutic agents, antipsychotics, and HIV protease inhibitors, into and out of the central nervous system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mast cells have been implicated in various diseases that are accompanied by neovascularization. The exact mechanisms by which mast cells might mediate an angiogenic response, however, are unclear and therefore, we have investigated the possible expression of vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) in the human mast cell line HMC-1 and in human skin mast cells. Reverse transcription-polymerase chain reaction (RT-PCR) analysis revealed that mast cells constitutively express VEGF121, VEGF165, and VEGF189. After a prolonged stimulation of cells for 24 h with phorbol 12-myristate 13-acetate (PMA) and the ionophore A23187, an additional transcript representing VEGF206 was detectable, as could be verified by sequence analysis. These results were confirmed at the protein level by Western blot analysis. When the amounts of VEGF released under unstimulated and stimulated conditions were compared, a significant increase was detectable after stimulation of cells. Human microvascular endothelial cells (HMVEC) responded to the supernatant of unstimulated HMC-1 cells with a dose-dependent mitogenic effect, neutralizable up to 90% in the presence of a VEGF-specific monoclonal antibody. Flow cytometry and postembedding immunoelectron microscopy were used to detect VEGF in its cell-associated form. VEGF was exclusively detectable in the secretory granules of isolated human skin mast cells. These results show that both normal and leukemic human mast cells constitutively express bioactive VEGF. Furthermore, this study contributes to the understanding of the physiological role of the strongly heparin-binding VEGF isoforms, since these were found for the first time to be expressed in an activation-dependent manner in HMC-1 cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Expression of BAX, without another death stimulus, proved sufficient to induce a common pathway of apoptosis. This included the activation of interleukin 1β-converting enzyme (ICE)-like proteases with cleavage of the endogenous substrates poly(ADP ribose) polymerase and D4-GDI (GDP dissociation inhibitor for the rho family), as well as the fluorogenic peptide acetyl-Asp-Glu-Val-Asp-aminotrifluoromethylcoumarin (DEVD-AFC). The inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (zVAD-fmk) successfully blocked this protease activity and prevented FAS-induced death but not BAX-induced death. Blocking ICE-like protease activity prevented the cleavage of nuclear and cytosolic substrates and the DNA degradation that followed BAX induction. However, the fall in mitochondrial membrane potential, production of reactive oxygen species, cytoplasmic vacuolation, and plasma membrane permeability that are downstream of BAX still occurred. Thus, BAX-induced alterations in mitochondrial function and subsequent cell death do not apparently require the known ICE-like proteases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sequence of events that leads to tumor vessel regression and the functional characteristics of these vessels during hormone–ablation therapy are not known. This is because of the lack of an appropriate animal model and monitoring technology. By using in vivo microscopy and in situ molecular analysis of the androgen-dependent Shionogi carcinoma grown in severe combined immunodeficient mice, we show that castration of these mice leads to tumor regression and a concomitant decrease in vascular endothelial growth factor (VEGF) expression. Androgen withdrawal is known to induce apoptosis in Shionogi tumor cells. Surprisingly, tumor endothelial cells begin to undergo apoptosis before neoplastic cells, and rarefaction of tumor vessels precedes the decrease in tumor size. The regressing vessels begin to exhibit normal phenotype, i.e., lower diameter, tortuosity, vascular permeability, and leukocyte adhesion. Two weeks after castration, a second wave of angiogenesis and tumor growth begins with a concomitant increase in VEGF expression. Because human tumors often relapse following hormone–ablation therapy, our data suggest that these patients may benefit from combined anti-VEGF therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When expressed in Xenopus oocytes, the trout red cell anion exchanger tAE1, but not the mouse exchanger mAE1, elicited a transport of electroneutral solutes (sorbitol, urea) in addition to the expected anion exchange activity. Chimeras constructed from mAE1 and tAE1 allowed us to identify the tAE1 domains involved in the induction of these transports. Expression of tAE1 (but not mAE1) is known to generate an anion conductance associated with a taurine transport. The present data provide evidence that (i) the capacity of tAE1 and tAE1 chimeras to generate urea and sorbitol permeability also was associated with an anion conductance; (ii) the same inhibitors affected both the permeability of solutes and anion conductance; and (iii) no measurable water transport was associated with the tAE1-dependent conductance. These results support the view that fish red blood cells, to achieve cell volume regulation in response to hypotonic swelling, activate a tAE1-associated anion channel that can mediate the passive transport of taurine and electroneutral solutes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We studied aquaporins in maize (Zea mays), an important crop in which numerous studies on plant water relations have been carried out. A maize cDNA, ZmTIP1, was isolated by reverse transcription-coupled PCR using conserved motifs from plant aquaporins. The derived amino acid sequence of ZmTIP1 shows 76% sequence identity with the tonoplast aquaporin γ-TIP (tonoplast intrinsic protein) from Arabidopsis. Expression of ZmTIP1 in Xenopus laevis oocytes showed that it increased the osmotic water permeability of oocytes 5-fold; this water transport was inhibited by mercuric chloride. A cross-reacting antiserum made against bean α-TIP was used for immunocytochemical localization of ZmTIP1. These results indicate that this and/or other aquaporins is abundantly present in the small vacuoles of meristematic cells. Northern analysis demonstrated that ZmTIP1 is expressed in all plant organs. In situ hybridization showed a high ZmTIP1 expression in meristems and zones of cell enlargement: tips of primary and lateral roots, leaf primordia, and male and female inflorescence meristems. The high ZmTIP1 expression in meristems and expanding cells suggests that ZmTIP1 is needed (a) for vacuole biogenesis and (b) to support the rapid influx of water into vacuoles during cell expansion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recovery of cell volume in response to osmotic stress is mediated in part by increases in the Cl- permeability of the plasma membrane. These studies evaluate the hypothesis that ATP release and autocrine stimulation of purinergic (P2) receptors couple increases in cell volume to opening of Cl- channels. In HTC rat hepatoma cells, swelling induced by hypotonic exposure increased membrane Cl- current density to 44.8 +/- 7.1 pA/pF at -80 mV. Both the rate of volume recovery and the increase in Cl- permeability were inhibited in the presence of the ATP hydrolase apyrase (3 units/ml) or by exposure to the P2 receptor blockers suramin and Reactive Blue 2 (10-100 microM). Cell swelling also stimulated release of ATP. Hypotonic exposure increased the concentration of ATP in the effluent of perfused cells by 170 +/- 36 nM in the presence of a nucleotidase inhibitor (P < 0.01). In whole-cell recordings with ATP as the charge carrier, cell swelling increased membrane current density approximately 30-fold to 16.5 +/- 10.4 pA/pF. These findings indicate that increases in cell volume lead to efflux of ATP through opening of a conductive pathway consistent with a channel, and that extracellular ATP is required for recovery from swelling. ATP may function as an autocrine factor that couples increases in cell volume to opening of Cl- channels through stimulation of P2 receptors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fermentation of nonabsorbed nutrients in the colon generates high concentrations of NH3/NH4+ in the colonic lumen. NH3 is a small, lipophilic neutral weak base that readily permeates almost all cell membranes, whereas its conjugate weak acid NH4+ generally crosses membranes much more slowly. It is not known how colonocytes maintain intracellular pH in the unusual acid-base environment of the colon, where permeant acid-base products of fermentation exist in high concentration. To address this issue, we hand dissected and perfused single, isolated crypts from rabbit proximal colon, adapting techniques from renal-tubule microperfusion. Crypt perfusion permits control of solutions at the apical (luminal) and basolateral (serosal) surfaces of crypt cells. We assessed apical- vs. basolateral-membrane transport of NH3/NH4+ by using fluorescent dyes and digital imaging to monitor intracellular pH of microvacuolated crypt cells as well as luminal pH. We found that, although the basolateral membranes have normal NH3/NH4+ permeability properties, there is no evidence for transport of either NH3 or NH4+ across the apical borders of these crypt cells. Disaggregating luminal mucus did not increase the transport of NH3/NH4+ across the apical border. We conclude that, compared to the basolateral membrane, the apical border of crypt colonocytes has a very low permeability-area product for NH3/NH4+. This barrier may represent an important adaptation for the survival of crypt cells in the environment of the colon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mycobacterial cell wall contains large amounts of unusual lipids, including mycolic acids that are covalently linked to the underlying arabinogalactan-peptidoglycan complex. Hydrocarbon chains of much of these lipids have been shown to be packed in a direction perpendicular to the plane of the cell surface. In this study, we examined the dynamic properties of the organized lipid domains in the cell wall isolated from Mycobacterium chelonae grown at 30 degrees C. Differential scanning calorimetry showed that much of the lipids underwent major thermal transitions between 30 degree C and 65 degrees C, that is at temperatures above the growth temperature, a result suggesting that a significant portion of the lipids existed in a structure of extremely low fluidity in the growing cells. Spin-labeled fatty acid probes were successfully inserted into the more fluid part of the cell wall. Our model of the cell wall suggests that this domain corresponds to the outermost leaflet, a conclusion reinforced by the observation that labeling of intact cells produced electron spin resonance spectra similar to those of the isolated cell wall. Use of stearate labeled at different positions showed that the fluidity within the outer leaflet increased only slightly as the nitroxide group was placed farther away from the surface. These results are consistent with the model of mycobacterial cell wall containing an asymmetric lipid bilayer, with an internal, less fluid mycolic acid leaflet and an external, more fluid leaflet composed of lipids containing shorter chain fatty acids. The presence of the low-fluidity layer will lower the permeability of the cell wall to lipophilic antibiotics and chemotherapeutic agents and may contribute to the well-known intrinsic resistance of mycobacteria to such compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To simulate the process of calcification in hydrogel implants, particularly calcification inside hydrogels, in vitro experiments using two compartment permeation cells have been performed. PHEMA hydrogel membranes were synthesized by free radical polymerization in bulk. The permeability and diffusion coefficient for Ca2+ ions at 37 &DEG; C were determined using Fick's laws of diffusion. It was evident that Ca2+ ions either from CaCl2 or SBF solutions may diffuse through PHEMA hydrogel membranes. The fort-nation of calcium phosphate deposits inside the hydrogel was observed and attributed to a heterogeneous nucleation from diffusing calcium and phosphate ions. The morphology of the deposits both on the surface and inside the hydrogels was found to be similar, i.e. spherical aggregates with a diameter of less than one micron. © 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Physiological changes that take place at cellular level are usually reflective of their level of gene expression. Different formulation excipients have an impact on physiological behavior of the exposed cells and in turn affect transporter genes, enterocyte-mediated metabolism and toxicity biomarkers. The aim of this study was to prepare solid dispersion of paracetamol and evaluate genetic changes that occur in Caco-2 cell lines during the permeability of paracetamol alone and paracetamol solid dispersion formulations. Paracetamol-PEG 8000 solid dispersion was prepared by melt fusion method and the formulation was characterised using differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Formulation of solid dispersion resulted in the conversion of crystalline drug into an amorphous form. Permeability studies showed that paracetamol absorption was higher from the solid dispersion formulation. DNA microarrays analysis was carried out in order to investigate the involvement of any efflux/uptake transporters in paracetamol or its solid dispersion permeability. Neither transporter carriers nor efflux proteins were found to be involved in the absorption of paracetamol or its PEG solid dispersion. Gene expression analysis established that paracetamol toxicity was potentially reduced upon formulation into solid dispersion when ATP binding cassette (ABC) and solute carrier transporter (SLC) genes were analyzed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Celiac disease is characterized by the presence of specific autoantibodies targeted against transglutaminase 2 (TG2) in untreated patients' serum and at their production site in the small-bowel mucosa below the basement membrane and around the blood vessels. As these autoantibodies have biological activity in vitro, such as inhibition of angiogenesis, we studied if they might also modulate the endothelial barrier function. Our results show that celiac disease patient autoantibodies increase endothelial permeability for macromolecules, and enhance the binding of lymphocytes to the endothelium and their transendothelial migration when compared to control antibodies in an endothelial cell-based in vitro model. We also demonstrate that these effects are mediated by increased activities of TG2 and RhoA. Since the small bowel mucosal endothelium serves as a "gatekeeper" in inflammatory processes, the disease-specific autoantibodies targeted against TG2 could thus contribute to the pathogenic cascade of celiac disease by increasing blood vessel permeability.