964 resultados para canopy interception
Resumo:
Four experiments conducted over three seasons (2002–05) at the Crops Research Unit, University of Reading, investigated effects of canopy management of autumn sown oilseed rape (Brassica napus L. ssp. oleifera var. biennis (DC.) Metzg.) on competition with grass weeds. Emphasis was placed on the effect of the crop on the weeds. Rape canopy size was manipulated using sowing date, seed rate and the application of autumn fertilizer. Lolium multiflorum Lam., L.rboucheanum Kunth and Alopecurus myosuroides Huds. were sown as indicative grass weeds. The effects of sowing date, seed rate and autumn nitrogen on crop competitive ability were correlated with rape biomass and fractional interception of photosynthetically active radiation (PAR) by the rape floral layer, to the extent that by spring there was good evidence of crop: weed replacement. An increase in seed rate up to the highest plant densities tested increased both rape biomass and competitiveness, e.g. in 2002/3, L. multiflorum head density was reduced from 539 to 245 heads/m2 and spikelet density from 13 170 to 5960 spikelets/m2 when rape plant density was increased from 16 to 81 plants/m2. Spikelets/head of Lolium spp. was little affected by rape seed rate, but the length of heads of A. myosuroides was reduced by 9%when plant density was increased from 29–51 plants/m2. Autumn nitrogen increased rape biomass and reduced L. multiflorum head density (415 and 336 heads/m2 without and with autumn nitrogen, respectively) and spikelet density (9990 and 8220 spikelets/m2 without and with autumn nitrogen, respectively). The number of spikelets/head was not significantly affected by autumn nitrogen. Early sowing could increase biomass and competitiveness, but poor crop establishment sometimes overrode the effect. Where crop and weed establishment was similar for both sowing dates, a 2-week delay (i.e. early September to mid-September) increased L. multiflorum head density from 226 to 633 heads/m2 and spikelet density from 5780 to 15 060 spikelets/m2.
Resumo:
Recent empirical studies have shown that multi-angle spectral data can be useful for predicting canopy height, but the physical reason for this correlation was not understood. We follow the concept of canopy spectral invariants, specifically escape probability, to gain insight into the observed correlation. Airborne Multi-Angle Imaging Spectrometer (AirMISR) and airborne Laser Vegetation Imaging Sensor (LVIS) data acquired during a NASA Terrestrial Ecology Program aircraft campaign underlie our analysis. Two multivariate linear regression models were developed to estimate LVIS height measures from 28 AirMISR multi-angle spectral reflectances and from the spectrally invariant escape probability at 7 AirMISR view angles. Both models achieved nearly the same accuracy, suggesting that canopy spectral invariant theory can explain the observed correlation. We hypothesize that the escape probability is sensitive to the aspect ratio (crown diameter to crown height). The multi-angle spectral data alone therefore may not provide enough information to retrieve canopy height globally.
Resumo:
Leaf expansion in the fast-growing tree,Populus × euramericana was stimulated by elevated [CO2] in a closed-canopy forest plantation, exposed using a free air CO2 enrichment technique enabling long-term experimentation in field conditions. The effects of elevated [CO2] over time were characterized and related to the leaf plastochron index (LPI), and showed that leaf expansion was stimulated at very early (LPI, 0–3) and late (LPI, 6–8) stages in development. Early and late effects of elevated [CO2] were largely the result of increased cell expansion and increased cell production, respectively. Spatial effects of elevated [CO2] were also marked and increased final leaf size resulted from an effect on leaf area, but not leaf length, demonstrating changed leaf shape in response to [CO2]. Leaves exhibited a basipetal gradient of leaf development, investigated by defining seven interveinal areas, with growth ceasing first at the leaf tip. Interestingly, and in contrast to other reports, no spatial differences in epidermal cell size were apparent across the lamina, whereas a clear basipetal gradient in cell production rate was found. These data suggest that the rate and timing of cell production was more important in determining leaf shape, given the constant cell size across the leaf lamina. The effect of elevated [CO2] imposed on this developmental gradient suggested that leaf cell production continued longer in elevated [CO2] and that basal increases in cell production rate were also more important than altered cell expansion for increased final leaf size and altered leaf shape in elevated [CO2].
Resumo:
The effects of elevated CO2 on leaf development in three genotypes of Populus were investigated during canopy closure, following exposure to elevated CO2 over 3 yr using free-air enrichment.• Leaf quality was altered such that nitrogen concentration per unit d. wt (Nmass) declined on average by 22 and 13% for sun and shade leaves, respectively, in elevated CO2. There was little evidence that this was the result of ‘dilution’ following accumulation of nonstructural carbohydrates. Most likely, this was the result of increased leaf thickness. Specific leaf area declined in elevated CO2 on average by 29 and 5% for sun and shade leaves, respectively.• Autumnal senescence was delayed in elevated CO2 with a 10% increase in the number of days at which 50% leaf loss occurred in elevated as compared with ambient CO2.• These data suggest that changes in leaf quality may be predicted following long-term acclimation of fast-growing forest trees to elevated CO2, and that canopy longevity may increase, with important implications for forest productivity.
Resumo:
We investigate the spatial characteristics of urban-like canopy flow by applying particle image velocimetry (PIV) to atmospheric turbulence. The study site was a Comprehensive Outdoor Scale MOdel (COSMO) experiment for urban climate in Japan. The PIV system captured the two-dimensional flow field within the canopy layer continuously for an hour with a sampling frequency of 30 Hz, thereby providing reliable outdoor turbulence statistics. PIV measurements in a wind-tunnel facility using similar roughness geometry, but with a lower sampling frequency of 4 Hz, were also done for comparison. The turbulent momentum flux from COSMO, and the wind tunnel showed similar values and distributions when scaled using friction velocity. Some different characteristics between outdoor and indoor flow fields were mainly caused by the larger fluctuations in wind direction for the atmospheric turbulence. The focus of the analysis is on a variety of instantaneous turbulent flow structures. One remarkable flow structure is termed 'flushing', that is, a large-scale upward motion prevailing across the whole vertical cross-section of a building gap. This is observed intermittently, whereby tracer particles are flushed vertically out from the canopy layer. Flushing phenomena are also observed in the wind tunnel where there is neither thermal stratification nor outer-layer turbulence. It is suggested that flushing phenomena are correlated with the passing of large-scale low-momentum regions above the canopy.
Resumo:
We investigated the role of urban Holm Oak (Quercus ilex L.) trees as airborne metal accumulators and metals' environmental fate. Analyses confirmed Pb, Cd, Cu and Zn as main contaminants in Siena's urban environment; only Pb concentrations decreased significantly compared to earlier surveys. Additionally, we determined chemical composition of tree leaves, litter and topsoil (underneath/outside tree crown) in urban and extra-urban oak stands. Most notably, litter in urban samples collected outside the canopy had significantly lower concentrations of organic matter and higher concentrations of Pb, Cu, Cd and Zn than litter collected underneath the canopy. There was a greater metals' accumulation in topsoil, in samples collected under the tree canopy and especially near the trunk ('stemflow area'). Thus, in urban ecosystems the Holm Oak stands likely increase the soil capability to bind metals.
Resumo:
For an increasing number of applications, mesoscale modelling systems now aim to better represent urban areas. The complexity of processes resolved by urban parametrization schemes varies with the application. The concept of fitness-for-purpose is therefore critical for both the choice of parametrizations and the way in which the scheme should be evaluated. A systematic and objective model response analysis procedure (Multiobjective Shuffled Complex Evolution Metropolis (MOSCEM) algorithm) is used to assess the fitness of the single-layer urban canopy parametrization implemented in the Weather Research and Forecasting (WRF) model. The scheme is evaluated regarding its ability to simulate observed surface energy fluxes and the sensitivity to input parameters. Recent amendments are described, focussing on features which improve its applicability to numerical weather prediction, such as a reduced and physically more meaningful list of input parameters. The study shows a high sensitivity of the scheme to parameters characterizing roof properties in contrast to a low response to road-related ones. Problems in partitioning of energy between turbulent sensible and latent heat fluxes are also emphasized. Some initial guidelines to prioritize efforts to obtain urban land-cover class characteristics in WRF are provided. Copyright © 2010 Royal Meteorological Society and Crown Copyright.
Resumo:
The mean wind direction within an urban canopy changes with height when the incoming flow is not orthogonal to obstacle faces. This wind-turning effect is induced by complex processes and its modelling in urban-canopy (UC) parametrizations is difficult. Here we focus on the analysis of the spatially-averaged flow properties over an aligned array of cubes and their variation with incoming wind direction. For this purpose, Reynolds-averaged Navier–Stokes simulations previously compared, for a reduced number of incident wind directions, against direct numerical simulation results are used. The drag formulation of a UCparametrization ismodified and different drag coefficients are tested in order to reproduce the wind-turning effect within the canopy for oblique wind directions. The simulations carried out for a UC parametrization in one-dimensional mode indicate that a height-dependent drag coefficient is needed to capture this effect.
Resumo:
Nocturnal cooling of air within a forest canopy and the resulting temperature profile may drive local thermally driven motions, such as drainage flows, which are believed to impact measurements of ecosystem–atmosphere exchange. To model such flows, it is necessary to accurately predict the rate of cooling. Cooling occurs primarily due to radiative heat loss. However, much of the radiative loss occurs at the surface of canopy elements (leaves, branches, and boles of trees), while radiative divergence in the canopy air space is small due to high transmissivity of air. Furthermore, sensible heat exchange between the canopy elements and the air space is slow relative to radiative fluxes. Therefore, canopy elements initially cool much more quickly than the canopy air space after the switch from radiative gain during the day to radiative loss during the night. Thus in modeling air cooling within a canopy, it is not appropriate to neglect the storage change of heat in the canopy elements or even to assume equal rates of cooling of the canopy air and canopy elements. Here a simple parameterization of radiatively driven cooling of air within the canopy is presented, which accounts implicitly for radiative cooling of the canopy volume, heat storage in the canopy elements, and heat transfer between the canopy elements and the air. Simulations using this parameterization are compared to temperature data from the Morgan–Monroe State Forest (IN, USA) FLUXNET site. While the model does not perfectly reproduce the measured rates of cooling, particularly near the top of the canopy, the simulated cooling rates are of the correct order of magnitude.
Resumo:
This paper investigates urban canopy layers (UCL) ventilation under neutral atmospheric condition with the same building area density (λp=0.25) and frontal area density (λf=0.25) but various urban sizes, building height variations, overall urban forms and wind directions. Turbulent airflows are first predicted by CFD simulations with standard k-ε model evaluated by wind tunnel data. Then air change rates per hour (ACH) and canopy purging flow rate (PFR) are numerically analyzed to quantify the rate of air exchange and the net ventilation capacity induced by mean flows and turbulence. With a parallel approaching wind (θ=0o), the velocity ratio first decreases in the adjustment region, followed by the fully-developed region where the flow reaches a balance. Although the flow quantities macroscopically keep constant, however ACH decreases and overall UCL ventilation becomes worse if urban size rises from 390m to 5km. Theoretically if urban size is infinite, ACH may reach a minimum value depending on local roof ventilation, and it rises from 1.7 to 7.5 if the standard deviation of building height variations increases (0% to 83.3%). Overall UCL ventilation capacity (PFR) with a square overall urban form (Lx=Ly=390m) is better as θ=0o than oblique winds (θ=15o, 30o, 45o), and it exceeds that of a staggered urban form under all wind directions (θ=0o to 45o), but is less than that of a rectangular urban form (Lx=570m, Ly=270m) under most wind directions (θ=30o to 90o). Further investigations are still required to quantify the net ventilation efficiency induced by mean flows and turbulence.
Resumo:
The trajectories of pheromone plumes in canopied habitats, such as orchards, have been little studied. We documented the capture of male navel orangeworm moths, Amyelois transitella, in female-baited traps positioned at 5 levels, from ground level to the canopy top, at approximately 6 m above ground, in almond orchards. Males were captured in similar proportions at all levels, suggesting that they do not favor a particular height during ranging flight. A 3-D sonic anemometer was used to establish patterns of wind flow and temperature at 6 heights from 2.08 to 6.65 m in an almond orchard with a 5 m high canopy, every 3 h over 72 h. The horizontal velocity of wind flow was highest above the canopy, where its directionality also was the most consistent. During the time of A. transitella mating (0300–0600), there was a net vertical displacement upward. Vertical buoyancy combined with only minor reductions in the distance that plumes will travel in the lower compared to the upper canopy suggest that the optimal height for release of pheromone from high-release-rate sources, such as aerosol dispensers (“puffers”), that are deployed at low densities (e.g., 3 per ha.) would be at mid or low in the canopy, thereby facilitating dispersion of disruptant throughout the canopy. Optimal placement of aerosol dispensers will vary with the behavioral ecology of the target pest; however, our results suggest that current protocols, which generally propose dispenser placement in the upper third of the canopy, should be reevaluated.