965 resultados para candidate gene


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Due to the growing attention of consumers towards their food, improvement of quality of animal products has become one of the main focus of research. To this aim, the application of modern molecular genetics approaches has been proved extremely useful and effective. This innovative drive includes all livestock species productions, including pork. The Italian pig breeding industry is unique because needs heavy pigs slaughtered at about 160 kg for the production of high quality processed products. For this reason, it requires precise meat quality and carcass characteristics. Two aspects have been considered in this thesis: the application of the transcriptome analysis in post mortem pig muscles as a possible method to evaluate meat quality parameters related to the pre mortem status of the animals, including health, nutrition, welfare, and with potential applications for product traceability (chapters 3 and 4); the study of candidate genes for obesity related traits in order to identify markers associated with fatness in pigs that could be applied to improve carcass quality (chapters 5, 6, and 7). Chapter three addresses the first issue from a methodological point of view. When we considered this issue, it was not obvious that post mortem skeletal muscle could be useful for transcriptomic analysis. Therefore we demonstrated that the quality of RNA extracted from skeletal muscle of pigs sampled at different post mortem intervals (20 minutes, 2 hours, 6 hours, and 24 hours) is good for downstream applications. Degradation occurred starting from 48 h post mortem even if at this time it is still possible to use some RNA products. In the fourth chapter, in order to demonstrate the potential use of RNA obtained up to 24 hours post mortem, we present the results of RNA analysis with the Affymetrix microarray platform that made it possible to assess the level of expression of more of 24000 mRNAs. We did not identify any significant differences between the different post mortem times suggesting that this technique could be applied to retrieve information coming from the transcriptome of skeletal muscle samples not collected just after slaughtering. This study represents the first contribution of this kind applied to pork. In the fifth chapter, we investigated as candidate for fat deposition the TBC1D1 [TBC1 (tre-2/USP6, BUB2, cdc16) gene. This gene is involved in mechanisms regulating energy homeostasis in skeletal muscle and is associated with predisposition to obesity in humans. By resequencing a fragment of the TBC1D1 gene we identified three synonymous mutations localized in exon 2 (g.40A>G, g.151C>T, and g.172T>C) and 2 polymorphisms localized in intron 2 (g.219G>A and g.252G>A). One of these polymorphisms (g.219G>A) was genotyped by high resolution melting (HRM) analysis and PCR-RFLP. Moreover, this gene sequence was mapped by radiation hybrid analysis on porcine chromosome 8. The association study was conducted in 756 performance tested pigs of Italian Large White and Italian Duroc breeds. Significant results were obtained for lean meat content, back fat thickness, visible intermuscular fat and ham weight. In chapter six, a second candidate gene (tribbles homolog 3, TRIB3) is analyzed in a study of association with carcass and meat quality traits. The TRIB3 gene is involved in energy metabolism of skeletal muscle and plays a role as suppressor of adipocyte differentiation. We identified two polymorphisms in the first coding exon of the porcine TRIB3 gene, one is a synonymous SNP (c.132T> C), a second is a missense mutation (c.146C> T, p.P49L). The two polymorphisms appear to be in complete linkage disequilibrium between and within breeds. The in silico analysis of the p.P49L substitution suggests that it might have a functional effect. The association study in about 650 pigs indicates that this marker is associated with back fat thickness in Italian Large White and Italian Duroc breeds in two different experimental designs. This polymorphisms is also associated with lactate content of muscle semimembranosus in Italian Large White pigs. Expression analysis indicated that this gene is transcribed in skeletal muscle and adipose tissue as well as in other tissues. In the seventh chapter, we reported the genotyping results for of 677 SNPs in extreme divergent groups of pigs chosen according to the extreme estimated breeding values for back fat thickness. SNPs were identified by resequencing, literature mining and in silico database mining. analysis, data reported in the literature of 60 candidates genes for obesity. Genotyping was carried out using the GoldenGate (Illumina) platform. Of the analyzed SNPs more that 300 were polymorphic in the genotyped population and had minor allele frequency (MAF) >0.05. Of these SNPs, 65 were associated (P<0.10) with back fat thickness. One of the most significant gene marker was the same TBC1D1 SNPs reported in chapter 5, confirming the role of this gene in fat deposition in pig. These results could be important to better define the pig as a model for human obesity other than for marker assisted selection to improve carcass characteristics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Heavy pig breeding in Italy is mainly oriented for the production of high quality processed products. Of particular importance is the dry cured ham production, which is strictly regulated and requires specific carcass characteristics correlated with green leg characteristics. Furthermore, as pigs are slaughtered at about 160 kg live weight, the Italian pig breeding sector faces severe problems of production efficiency that are related to all biological aspects linked to growth, feed conversion, fat deposition and so on. It is well known that production and carcass traits are in part genetically determined. Therefore, as a first step to understand genetic basis of traits that could have a direct or indirect impact on dry cured ham production, a candidate gene approach can be used to identify DNA markers associated with parameters of economic importance. In this thesis, we investigated three candidate genes for carcass and production traits (TRIB3, PCSK1, MUC4) in pig breeds used for dry cured ham production, using different experimental approaches in order to find molecular markers associated with these parameters.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Specific language impairment (SLI) is a complex neurodevelopmental disorder defined as an unexpected failure to develop normal language abilities for no obvious reason. Copy number variants (CNVs) are an important source of variation in the susceptibility to neuropsychiatric disorders. Therefore, a CNV study within SLI families was performed to investigate the role of structural variants in SLI. Among the identified CNVs, we focused on CNVs on chromosome 15q11-q13, recurrently observed in neuropsychiatric conditions, and a homozygous exonic microdeletion in ZNF277. Since this microdeletion falls within the AUTS1 locus, a region linked to autism spectrum disorders (ASD), we investigated a potential role of ZNF277 in SLI and ASD. Frequency data and expression analysis of the ZNF277 microdeletion suggested that this variant may contribute to the risk of language impairments in a complex manner, that is independent of the autism risk previously described in this region. Moreover, we identified an affected individual with a dihydropyrimidine dehydrogenase (DPD) deficiency, caused by compound heterozygosity of two deleterious variants in the gene DPYD. Since DPYD represents a good candidate gene for both SLI and ASD, we investigated its involvement in the susceptibility to these two disorders, focusing on the splicing variant rs3918290, the most common mutation in the DPD deficiency. We observed a higher frequency of rs3918290 in SLI cases (1.2%), compared to controls (~0.6%), while no difference was observed in a large ASD cohort. DPYD mutation screening in 4 SLI and 7 ASD families carrying the splicing variant identified six known missense changes and a novel variant in the promoter region. These data suggest that the combined effect of the mutations identified in affected individuals may lead to an altered DPD activity and that rare variants in DPYD might contribute to a minority of cases, in conjunction with other genetic or non-genetic factors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tyrolean Grey cattle represent a local breed with a population size of approximately 5000 registered cows. In 2003, a previously unknown neurological disorder was recognized in Tyrolean Grey cattle. The clinical signs of the disorder are similar to those of bovine progressive degenerative myeloencephalopathy (weaver syndrome) in Brown Swiss cattle but occur much earlier in life. The neuropathological investigation of an affected calf showed axonal degeneration in the central nervous system (CNS) and femoral nerve. The pedigrees of the affected calves suggested a monogenic autosomal recessive inheritance. We localized the responsible mutation to a 1.9 Mb interval on chromosome 16 by genome-wide association and haplotype mapping. The MFN2 gene located in this interval encodes mitofusin 2, a mitochondrial membrane protein. A heritable human axonal neuropathy, Charcot-Marie-Tooth disease-2A2 (CMT2A2), is caused by MFN2 mutations. Therefore, we considered MFN2 a positional and functional candidate gene and performed mutation analysis in affected and control Tyrolean Grey cattle. We did not find any non-synonymous variants. However, we identified a perfectly associated silent SNP in the coding region of exon 20 of the MFN2 gene. This SNP is located within a putative exonic splice enhancer (ESE) and the variant allele leads to partial retention of the entire intron 19 and a premature stop codon in the aberrant MFN2 transcript. Thus we have identified a highly unusual splicing defect, where an exonic single base exchange leads to the retention of the preceding intron. This splicing defect represents a potential explanation for the observed degenerative axonopathy. Marker assisted selection can now be used to eliminate degenerative axonopathy from Tyrolean Grey cattle.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Microphthalmia in sheep is an autosomal recessive inherited congenital anomaly found within the Texel breed. It is characterized by extremely small or absent eyes and affected lambs are absolutely blind. For the first time, we use a genome-wide ovine SNP array for positional cloning of a Mendelian trait in sheep. Genotyping 23 cases and 23 controls using Illumina's OvineSNP50 BeadChip allowed us to localize the causative mutation for microphthalmia to a 2.4 Mb interval on sheep chromosome 22 by association and homozygosity mapping. The PITX3 gene is located within this interval and encodes a homeodomain-containing transcription factor involved in vertebrate lens formation. An abnormal development of the lens vesicle was shown to be the primary event in ovine microphthalmia. Therefore, we considered PITX3 a positional and functional candidate gene. An ovine BAC clone was sequenced, and after full-length cDNA cloning the PITX3 gene was annotated. Here we show that the ovine microphthalmia phenotype is perfectly associated with a missense mutation (c.338G>C, p.R113P) in the evolutionary conserved homeodomain of PITX3. Selection against this candidate causative mutation can now be used to eliminate microphthalmia from Texel sheep in production systems. Furthermore, the identification of a naturally occurring PITX3 mutation offers the opportunity to use the Texel as a genetically characterized large animal model for human microphthalmia.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The polyneuropathy of juvenile Greyhound show dogs shows clinical similarities to the genetically heterogeneous Charcot-Marie-Tooth (CMT) disease in humans. The pedigrees containing affected dogs suggest monogenic autosomal recessive inheritance and all affected dogs trace back to a single male. Here, we studied the neuropathology of this disease and identified a candidate causative mutation. Peripheral nerve biopsies from affected dogs were examined using semi-thin histology, nerve fibre teasing and electron microscopy. A severe chronic progressive mixed polyneuropathy was observed. Seven affected and 17 related control dogs were genotyped on the 50k canine SNP chip. This allowed us to localize the causative mutation to a 19.5 Mb interval on chromosome 13 by homozygosity mapping. The NDRG1 gene is located within this interval and NDRG1 mutations have been shown to cause hereditary motor and sensory neuropathy-Lom in humans (CMT4D). Therefore, we considered NDRG1 a positional and functional candidate gene and performed mutation analysis in affected and control Greyhounds. A 10 bp deletion in canine NDRG1 exon 15 (c.1080_1089delTCGCCTGGAC) was perfectly associated with the polyneuropathy phenotype of Greyhound show dogs. The deletion causes a frame shift (p.Arg361SerfsX60) which alters several amino acids before a stop codon is encountered. A reduced level of NDRG1 transcript could be detected by RT-PCR. Western blot analysis demonstrated an absence of NDRG1 protein in peripheral nerve biopsy of an affected Greyhound. We thus have identified a candidate causative mutation for polyneuropathy in Greyhounds and identified the first genetically characterized canine CMT model which offers an opportunity to gain further insights into the pathobiology and therapy of human NDRG1 associated CMT disease. Selection against this mutation can now be used to eliminate polyneuropathy from Greyhound show dogs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Transferrin (TF)-mediated provision of iron is essential for a productive infection by many bacterial pathogens, and iron-depletion of TF is a first line defence against bacterial infections. Therefore, the transferrin (TF) gene can be considered a candidate gene for disease resistance. We obtained the complete DNA sequence of the porcine TF gene, which spans 40 kb and contains 17 exons. We identified polymorphisms on a panel of 10 different pig breeds. Comparative intra- and interbreed sequence analysis revealed 62 polymorphisms in the TF gene including one microsatellite. Ten polymorphisms were located in the coding sequence of the TF gene. Four SNPs (c.902A>T, c.980G>A, c.1417A>G, c.1810A>C) were predicted to cause amino acid exchanges (p.Lys301Ile, p.Arg327Lys, p.Lys473Glu, p.Asn604His). We performed association analyses using six selected TF markers and 116 pigs experimentally infected with Actinobacillus pleuropneumoniae serotype 7. The analysis showed breed-specific TF allele frequencies. In German Landrace, we found evidence for a possible association of the severity of A. pleuropneumoniae infection with TF genotypes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The rupture of intracranial aneurysms leads to subarachnoid hemorrhage, which is often associated with poor outcome. Preventive treatment of unruptured intracranial aneurysms is possible and recommended. However, the lack of candidate genes precludes identifying patients at risk by genetic analyses. We observed intracranial aneurysms in 2 patients with von Hippel-Lindau (VHL) disease and the known disease-causing mutation c.292T > C (p.Tyr98His) in the VHL tumor suppressor gene. This study investigates whether the VHL gene is a possible candidate gene for aneurysm formation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hereditary hair length variability in mice and dogs is caused by mutations within the fibroblast growth factor 5 (FGF5) gene. The aim of this study was to evaluate the feline FGF5 orthologue as a functional candidate gene for the long hair phenotype in cats, which is recessive to short hair. We amplified the feline FGF5 cDNA and characterised two alternatively spliced transcripts by RT-PCR. Comparative cDNA and genomic DNA sequencing of long- and short-haired cats revealed four non-synonymous polymorphisms in the FGF5 coding sequence. A missense mutation (AM412646:c.194C>A) was found in the homozygous state in 25 long-haired Somali, Persian, Maine Coon, Ragdoll and crossbred cats. Fifty-five short-haired cats had zero or one copy of this allele. Additionally, we found perfect co-segregation of the c.194C>A mutation within two independent pedigrees segregating for hair length. A second FGF5 exon 1 missense mutation (AM412646:c.182T>A) was found exclusively in long-haired Norwegian Forest cats. The c.182T>A mutation probably represents a second FGF5 mutation responsible for long hair in cats. In addition to the c.194C>A mutation, a frameshift mutation (AM412646:c.474delT) was found with a high frequency in the long-haired Maine Coon breed. Finally, a missense mutation (AM412646:c.475A>C) was also associated with the long-haired phenotype in some breeds. However, as one short-haired cat was homozygous for this polymorphism, it is unlikely that it has a functional role in the determination of hair length.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Osteogenesis imperfecta (OI) is a hereditary disease occurring in humans and dogs. It is characterized by extremely fragile bones and teeth. Most human and some canine OI cases are caused by mutations in the COL1A1 and COL1A2 genes encoding the subunits of collagen I. Recently, mutations in the CRTAP and LEPRE1 genes were found to cause some rare forms of human OI. Many OI cases exist where the causative mutation has not yet been found. We investigated Dachshunds with an autosomal recessive form of OI. Genotyping only five affected dogs on the 50 k canine SNP chip allowed us to localize the causative mutation to a 5.82 Mb interval on chromosome 21 by homozygosity mapping. Haplotype analysis of five additional carriers narrowed the interval further down to 4.74 Mb. The SERPINH1 gene is located within this interval and encodes an essential chaperone involved in the correct folding of the collagen triple helix. Therefore, we considered SERPINH1 a positional and functional candidate gene and performed mutation analysis in affected and control Dachshunds. A missense mutation (c.977C>T, p.L326P) located in an evolutionary conserved domain was perfectly associated with the OI phenotype. We thus have identified a candidate causative mutation for OI in Dachshunds and identified a fifth OI gene.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The first cases of early-onset progressive polyneuropathy appeared in the Alaskan Malamute population in Norway in the late 1970s. Affected dogs were of both sexes and were ambulatory paraparetic, progressing to non-ambulatory tetraparesis. On neurologic examination, affected dogs displayed predominantly laryngeal paresis, decreased postural reactions, decreased spinal reflexes and muscle atrophy. The disease was considered eradicated through breeding programmes but recently new cases have occurred in the Nordic countries and the USA. The N-myc downstream-regulated gene (NDRG1) is implicated in neuropathies with comparable symptoms or clinical signs both in humans and in Greyhound dogs. This gene was therefore considered a candidate gene for the polyneuropathy in Alaskan Malamutes. The coding sequence of the NDRG1 gene derived from one healthy and one affected Alaskan Malamute revealed a non-synonymous G>T mutation in exon 4 in the affected dog that causes a Gly98Val amino acid substitution. This substitution was categorized to be "probably damaging" to the protein function by PolyPhen2 (score: 1.000). Subsequently, 102 Alaskan Malamutes from the Nordic countries and the USA known to be either affected (n = 22), obligate carriers (n = 7) or healthy (n = 73) were genotyped for the SNP using TaqMan. All affected dogs had the T/T genotype, the obligate carriers had the G/T genotype and the healthy dogs had the G/G genotype except for 13 who had the G/T genotype. A protein alignment showed that residue 98 is conserved in mammals and also that the entire NDRG1 protein is highly conserved (94.7%) in mammals. We conclude that the G>T substitution is most likely the mutation that causes polyneuropathy in Alaskan Malamutes. Our characterization of a novel candidate causative mutation for polyneuropathy offers a new canine model that can provide further insight into pathobiology and therapy of human polyneuropathy. Furthermore, selection against this mutation can now be used to eliminate the disease in Alaskan Malamutes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Insect bite hypersensitivity (IBH) is an allergic dermatitis of horses caused by bites of insects. IBH is a multifactorial disease with contribution of genetic and environmental factors. Candidate gene association analysis of IBH was performed in a group of 89 Icelandic horses all born in Iceland and imported to Europe. Horses were classified in IBH-affected and non-affected based on clinical signs and history of recurrent dermatitis, and on the results of an in vitro sulfidoleukotriene (sLT)-release assay with Culicoides nubeculosus and Simulium vittatum extract. Different genetic markers were tested for association with IBH by the Fisher's exact test. The effect of the major histocompatibility complex (MHC) gene region was studied by genotyping five microsatellites spanning the MHC region (COR112, COR113, COR114, UM011 and UMN-JH34-2), and exon 2 polymorphisms of the class II Eqca-DRA gene. Associations with Eqca-DRA and COR113 were identified (p < 0.05). In addition, a panel of 20 single nucleotide polymorphisms (SNPs) in 17 candidate allergy-related genes was tested. During the initial screen, no marker from the panel was significantly (p < 0.05) associated with IBH. Five SNPs associated with IBH at p < 0.10 were therefore used for analysis of combined genotypes. Out of them, SNPs located in the genes coding for the CD14 receptor (CD14), interleukin 23 receptor (IL23R), thymic stromal lymphopoietin (TSLP) and transforming growth factor beta 3 (TGFB3) molecules were associated with IBH as parts of complex genotypes. These results are supported by similar associations and by expression data from different horse populations and from human studies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bovine colostrogenesis is distinguished by the specific transfer of IgG1 from the blood to mammary secretions. The process has been shown to be initiated by hormones and occurs during the last weeks of pregnancy when steroid concentrations of estradiol (E2 ) and progesterone (P4 ) are highly elevated. Rodent intestinal uptake of immunoglobulin G is mediated by a receptor termed Fc fragment of IgG, Receptor, Transporter, alpha (FcGRT) and supported by light chain Beta-2-Microglobulin (β2M). We hypothesized that steroid hormone treatments (E2 and P4 ) of bovine mammary epithelial cells in vitro would induce up-regulation of IgG1 transcytosis candidate gene mRNA expression suggesting involvement in IgG1 transcytosis. Two different primary bovine mammary epithelial cell cultures were cultured on plastic and rat tail collagen and treated with hormonal combinations (steroids/lactogenic hormones). Evaluated mRNA components were bLactoferrin (bLf: a control), bFcGRT, β2M, and various small GTPases; the latter components are reported to direct endosomal movements in eukaryotic cells. All tested transcytosis components showed strong expression of mRNA in the cells. Expression of bFcGRT, bRab25 and bRhoB were significantly up-regulated (p < 0.05) by steroid hormones. bRab25 and bRhoB showed increased expression by steroid treatments, but also with lactogenic hormones. Analysis for the oestrogen receptor (ER) mRNA was mostly negative, but 25% of the cultures tested exhibited weak expression, while the progesterone receptor (PR) mRNA was always detected. bRab25 and bRhoB and likely bFcGRT are potential candidate genes for IgG1 transcytosis in bovine mammary cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

As pituitary function depends on the integrity of the hypothalamic-pituitary axis, any defect in the development and organogenesis of this gland may account for a form of combined pituitary hormone deficiency (CPHD). Although pit-1 was 1 of the first factors identified as a cause of CPHD in mice, many other homeodomain and transcription factors have been characterized as being involved in different developmental stages of pituitary gland development, such as prophet of pit-1 (prop-1), P-Lim, ETS-1, and Brn 4. The aims of the present study were first to screen families and patients suffering from different forms of CPHD for PROP1 gene alterations, and second to define possible hot spots and the frequency of the different gene alterations found. Of 73 subjects (36 families) analyzed, we found 35 patients, belonging to 18 unrelated families, with CPHD caused by a PROP1 gene defect. The PROP1 gene alterations included 3 missense mutations, 2 frameshift mutations, and 1 splice site mutation. The 2 reported frameshift mutations could be caused by any 2-bp GA or AG deletion at either the 148-GGA-GGG-153 or 295-CGA-GAG-AGT-303 position. As any combination of a GA or AG deletion yields the same sequencing data, the frameshift mutations were called 149delGA and 296delGA, respectively. All but 1 mutation were located in the PROP1 gene encoding the homeodomain. Importantly, 3 tandem repeats of the dinucleotides GA at location 296-302 in the PROP1 gene represent a hot spot for CPHD. In conclusion, the PROP1 gene seems to be a major candidate gene for CPHD; however, further studies are needed to evaluate other genetic defects involved in pituitary development.