931 resultados para calc alkaline rock
Resumo:
The Barra do Itapirapua ( BIT) carbonatites in southern Brazil belong to the final stages of the Early Cretaceous alkaline rock - carbonatite magmatism of the Ponta Grossa Arch Province. The BIT complex is a dyke and vein stockwork in which four main carbonatitic phases are recognized, mainly magnesiocarbonatites and ferrocarbonatites. These carbonatites are generally overprinted by pervasive hydrothermal events. The C-O stable isotopic data indicate re-equilibration under hydrothermal conditions at temperatures between 375 and 80 degrees C. Significant amounts of REE fluorocarbonate minerals, relatively Sr- and Th-rich, were deposited. Syntaxy between synchysite-(Ce) and parisite-(Ce) is very common owing to the similarity in structures, with alternating (001) layers of (CeF), (CO3) and (Ca). However, bastnasite-(Ce) occurs as individual crystals, overgrown by the synchysite and parisite polycrystals. Textural and chemical reactions between the REE fluorocarbonates provide insights into the mobility of rare-earth elements during fluid-rock interaction. The BIT complex is considered to be of potential economic interest for production of the rare-earth concentrates.
Resumo:
The Serrinha magmatic suite (Mineiro belt) crops out in the southern edge of the Sao Francisco craton, comprising the Brito quartz-diorite, Brumado de Cima and Brumado de Baixo granodiorites, granophyres and felsic sub-volcanic and volcanic rocks, part of which intruded into the Nazareno greenstone belt. The suite rocks have petrographic features that are consistent with magma supercooling due to the low water content combined with volatile loss, leading to crystallization of quartz and alkaline feldspar at the rims of plagioclase phenocrysts (granophyric intergrowth). The investigated rocks are sub-alkaline, calc-alkaline and show low content in rare earth elements. The U-Pb zircon crystallization ages for the Brumado de Cima granodiorite [2227 +/- 22 (23) Ma] and a coeval granophyre [2211 +/- 22 (23) Ma], coupled with available single-zircon Pb evaporation ages for the Brito and Brumado de Baixo plutons, are significantly older than the ""Minas orogeny"" (ca. 2100-2050 Ga) of Quadrilatero Ferrifero area, eastward from the Serrinha suite. Our data establish an early Rhyacian event tectonically linked with the evolution of the Mineiro belt. The bulk Nd isotopic signature [low negative to positive epsilon(Nd(t)) values] of the Serrinha samples are consistent with the important role of Paleoproterozoic mantle components in the magma genesis. The integrated geologic, geochemical and isotopic information suggests that Paleoproterozoic evolution of the Mineiro belt initiated in a passive continental margin basin with deposition of the Minas Supergroup at ca. 2500 Ma. This stage was succeeded by outboard rupture of the oceanic lithosphere with development and coalescence of progressively younger magmatic arcs during Rhyacian time. One of the earliest arcs formed the Serrinha suite. The tectonic collage of the Serrinha and Ritapolis (2190-2120 Ma) arcs produced the NE-SW Lenheiro shear zone, resulting in mylonitization and recrystallization of both the granitoid intrusions and host rocks. As a matter of fact juxtaposition of distinct magmatic units in age and origin took place along the Lenheiros structure in this sector of the Mineiro belt. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The main Precambrian tectonic units of Uruguay include the Piedra Alta tectonostratigraphic terrane (PATT) and Nico Perez tectonostratigraphic terrane (NPTT), separated by the Sarandi del Yi high-strain zone. Both terranes are well exposed in the Rio de La Plata craton (RPC). Although these tectonic units are geographically small, they record a wide span of geologic time. Therefore improved geological knowledge of this area provides a fuller understanding of the evolution of the core of South America. The PATT is constituted by low-to medium-grade metamorphic belts (ca. 2.1 Ga); its petrotectonic associations such as metavolcanic units, conglomerates, banded iron formations, and turbiditic deposits suggest a back-arc or a trench-basin setting. Also in the PATT, a late to post-orogenic, arc-related layered mafic complex (2.3-1.9 Ga), followed by A-type granites (2.08 Ga), and finally a taphrogenic mafic dike swarm (1.78 Ga) occur. The less thoroughly studied NPTT consists of Palaeoproterozoic high-grade metamorphic sequences (ca. 2.2 Ga), mylonites and postorogenic and rapakivi granites (1.75 Ga). The Brasiliano-Pan African orogeny affected this terrane. Neoproterozoic cover occurs in both tectonostratigraphic terranes, but is more developed in the NPTT. Over the past 15 years, new isotopic studies have improved our recognition of different tectonic events and associated processes, such as reactivation of shear zones and fluids circulation. Transamazonian and Statherian tectonic events were recognized in the RPC. Based on magmatism, deformation, basin development and metamorphism, we propose a scheme for the Precambrian tectonic evolution of Uruguay, which is summarized in the first Palaeoproterozoic tectonic map of the Rio de La Plata craton.
Resumo:
The Amazonian craton in the Sao Felix do Xingu city, southeast region of the Para state, north of Brazil, hosts exceptionally well-preserved Paleoproterozoic bimodal magmatic units grouped in the Sobreiro and Santa Rosa formations. These formations are correlated to the Uatuma magmatic event, which is largely distributed in the Amazonian craton occupying more than 1,500,000 km(2). Geological mapping and petrographical observations reveal distinct spectra of volcanic facies in both formations. The basal calc-alkaline Sobreiro Formation is composed mainly of andesitic and dacitic lava flows and associated volcaniclastic facies of autoclastic origin, with subordinate pyroclastic flow deposits. This formation shows inferred eruption style that is similar to those in Flood Basalt Provinces, with rare scutulum-type lava shields. The upper A-type Santa Rosa Formation was generated by multicyclic explosive and effusive episodes predominantly associated with large fissures and is materialized by voluminous ignimbrites with subordinated ash-fall tuff, crystal tuff, lapilli-tuff, co-ignimbritic breccias, rhyolitic dikes and domes, and associated granitic porphyries and equigranular granitic intrusions. Ignimbrite and rhyolite dikes reveal conspicuous vertical flow pattern pointing to a fissure-controlled eruption, similar to Sierra Madre Occidental ignimbrite province. The proposed evolutionary model for the Sao Felix do Xingu units differs from those of other occurrences related to the Uatuma magmatic event in the Amazonian craton, characterized by predominance of A-type volcanism and contemporaneous granites. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
O uso de fontes não convencionais para fornecimento de K às plantas tem sido amplamente estudado, mas os efeitos de materiais alternativos na qualidade fisiológica das sementes não são conhecidos. Este estudo teve como objetivo avaliar a qualidade fisiológica de sementes de soja e trigo em função da aplicação fontes de potássio em uma sucessão de culturas. O delineamento experimental foi o de blocos ao acaso com quatro repetições. Os tratamentos constaram de três fontes de K (KCl, rocha alcalina e fonolito moído, com 58%, 11% e 8.42% de K2O, respectivamente) aplicados em quatro doses (0, 25, 50 e 100 kg K2O ha-1). As doses de potássio foram aplicadas na soja e seu efeito residual foi avaliado na cultura do trigo, cultivado em sucessão. Logo após a colheita, as sementes de soja e trigo foram avaliadas pelos testes de teor de água, massa de sementes, germinação, primeira contagem, condutividade elétrica, comprimento de plântulas e massa da matéria seca de plântulas. Plantas de soja adubadas com fontes alternativas para fornecimento de K produzem sementes com maior massa e menor permeabilidade de membranas comparado às com KCl; maior qualidade fisiológica de sementes de soja e massa de sementes de trigo são obtidas com maiores doses de K2O independente da fonte.
Resumo:
This dissertation describes the igneous suites of the Japi granitoid pluton, intrusive in the Paleoproterozoic gneiss-migmatite complex of the eastern domain of the Seridó Belt, northeastern Brazil. Field relations show that the pluton is affected by strong deformation associated to the Brasiliano orogeny (known as the D3 phase) , with a NW-trending extensionalleft-hand senestral shear zone (the Japi Shear Zone, JSZ) bordering the intrusive body to the west. Four plutonic suites are found in the main pluton and as satellyte intrusions, besides Iate pegmatite and pink leucogranites. An alkaline granitoid suite, dominated by syenogranites bearing sodic augite (and subordinate hornblende), define a main elliptical intrusion. In its northern part, this intrusion is made up by concentric sheets, contrasting with a smaller rounded stock to the south. These granites display a pervasive solid-state S>L fabric developed under high T conditions, characterized by plastic deformation of quartz and feldspar. It is especially, developed along the border of the pluton, with inward dips. A regular magmatic layering is present sometimes, parallel to the tectonic foliation. The syntectonic emplacement as regards to the Brasiliano (D3) event is indicated by the common occurrence of dykes and sheets along transtensional or extensional sites of the major structure. Field relations attest to the early emplacement of the alkaline granites as regards to the other suites. A basic-to-intermediate suite occurs as a western satellyte body and occupying the southern tail of the main alkaline pluton. It comprises a wide variety of compositional terms, including primitive gabbros and gabbro-norites, differentiated to monzonitic intermediate facies containing amphibole and biotite as their main mafic phases. These rocks display transitional high-K calc-alkaline to shoshonitic affinities. Porphyritic monzogranite suítes commonly occur as dykes and minor intrusives, isolated or associated with the basic-tointermediate rocks. In the latter case, magma mingling and mixing features attest that these are contemporaneous igneous suites. These granites show K-feldspar phenocrysts and a hornblende+biotite+titanite assemblage, displaying subalkaline/monzonitic geochemical affinities. Both suites exhibit SL magmatic fabrics overprinting or transitional to solid-state D3 deformation related to the JSI. Chemical data clearly show that they are related to different parental magmas. Finally, a microgranite suite occurs along a few topographic ridges paralell to the JSI. It comprises dominantly granodiorites with a mineralogy similar to the one of the porphyritic granitoids. However, discriminant diagrams show their distinct calc-alkaline affinity. The granodiorites display an essencially magmatic fabric, even though an incipient D3 solid-state structure may be developed along the JSI. Intrusion relationships with the previous suites, as well as regards to the D3 structures, point to their Iate emplacement. All these suites are intrusive in a Paleoproterozoic, high-grade gneiss-migmatite complex affected by two previous deformation phases (D1, D2). The fabrics associated with these earlier events are folded and overprinted by the younger D3 structures along the JSZ. The younger deformation is characterized by NE-dipping foliations and N/NE-plunging stretching lineations. In the JSZ northern termination the foliation acquires an ENE orientation, containing a stretching lineation plunging to the south. Symmetric kinematic cri teria developed at this site confirms the transpressional termination of the JSZ, as also shown by orthorrombic quartz c-axis patterns. E-W-trending d extra I shear zones developed in the central part of the JSZ are interpreted as antithetic structures associated to the transtensional deformation along the JSZ. This is consistent with its extensional-transcurrent kinematics and a flat-and-ramp geometry at depth, as shown by gravimetric data. The lateral displacement of the negative residual Bouguer anomalies, as regards to the main outcropping alkaline pluton, may be modelized by other deeper-seated granite bodies. Based on numerical modelling it was possible to infer two distinct intrusion styles for the alkaline pluton. The calculated model values are consistent with an emplacement by sheeting for the northern body, as already suggested by satellyte imagery and field mapping. On the other hand, the results point to a transition towards a diapir-related style associated to the smaller. southern stock. This difference in intrusion styles may relate to intensity variations and transtensional sites of the shear deformation along the JSZ. Trace element and Sr and Nd isotopes of the alkaline granites are compatible with their derivation trom a more basic crustal source, as compared to the presently outcropping highgrade gneisses, with participation (or alternatively dominated by) of an enriched lithospheric mantle component. Like other igneous suites in the Seridó Belt, the high LlL contents and fractionated REE patterns of the basic rocks also point to an enriched mantle as the source for this kind of magmatism. Geochemical and isotope data are compatible with a lower crustal origin for the porphyritic granites. On the basis of the strong control of the JSZ on the emplacement of lower crustal (porphyritic and alkaline granites) or lithospheric mantle (basic rocks, alkaline granites or a component of them) magmas, one may infer a deep root for this structure, bearing an important role in magma extraction, transport and emplacement in the Japi region, eastern domain of the Seridó Belt
Resumo:
The final stage of Brasiliano/Pan-African orogeny in the Borborema Province is marked by widespread plutonic magmatism. The Serra da Macambira Pluton is an example of such plutonism in Seridó Belt, northeastern Borborema Province, and it is here subject of geological, petrographic, textural, geochemical and petrogenetic studies. The pluton is located in the State of Rio Grande do Norte, intrusive into Paleoproterozoic orthogneisses of the Caicó Complex and Neoproterozoic metassupracrustal rocks of the Seridó Group. Based upon intrusion/inclusion field relationships, mineralogy and texture, the rocks are classified as follows: intermediate enclaves (quartz-bearing monzonite and biotite-bearing tonalite), porphyritic monzogranite, equigranular syenogranite to monzogranite, and late granite and pegmatite dykes. Porphyritic granites and quartz-bearing monzonites represent mingling formed by the injection of an intermediate magma into a granitic one, which had already started crystallization. Both rocks are slightly older than the equigranular granites. Quartz-bearing monzonite has K-feldspar, plagioclase, biotite, hornblende and few quartz, meanwhile biotite-bearing tonalite are rich in quartz, poor in K-feldspar and hornblende is absent. Porphyritic and equigranular granites display mainly biotite and rare hornblende, myrmekite and pertitic textures, and zoned plagioclase pointing out to the relevance of fractional crystallization during magma evolution. Such granites have Rare Earth Elements (REE) pattern with negative Eu anomaly and light REE enrichment when compared to heavy REE. They are slight metaluminous to slight peraluminous, following a high-K calc-alkaline path. Petrogenesis started with 27,5% partial melting of Paleoproterozoic continental crust, generating an acid hydrous liquid, leaving a granulitic residue with orthopyroxene, plagioclase (An40-50), K-feldspar, quartz, epidote, magnetite, ilmenite, apatite and zircon. The liquid evolved mainly by fractional crystallization (10-25%) of plagioclase (An20), biotite and hornblende during the first stages of magmatic evolution. Granitic dykes are hololeucocratic with granophyric texture, indicating hypabissal crystallization and REE patterns similar to A-Type granites. Preserved igneous textures, absence or weak imprint of ductile tectonics, association with mafic to intermediate enclaves and alignment of samples according to monzonitic (high-K calcalkaline) series all indicate post-collisional to post-orogenic complexes as described in the literature. Such interpretation is supported by trace element discrimination diagrams that place the Serra da Macambira pluton as late-orogenic, probably reflecting the vanishing stages of the exhumation and collapse of the Brasiliano/Pan-African orogen.
Resumo:
The of Serrinha plutonic suite, northeastern portion of the Borborema Province (NE Brazil), is characterized by a voluminous and diversified magmatism of Neoproterozoic age, intrusive in the Archean to Paleoproterozoic gneissic-migmatitic basement of the São José de Campestre massif. Field relations and petrographic and geochemical data allowed us to individualize different lithologic types among this plutonic suite, which is represented by intermediate to mafic enclaves, porphyritic diorites, porphyritic granitoids, porphyritic granodiorites, microporphyritic granites and dykes/sheets of microgranite. The intermediate-to-mafic enclaves occur associated with porphyritic granitoids, showing mixture textures. The porphyrytic diorites occur as isolated bodies, generally associated with intermediate-to-mafic enclaves and locally as enclaves within porphyritic granites. The granodiorites represent mixing between an intermediate to mafic magma with an acidic one. The micropophyritic granites occur as isolated small bodies, generally deformed, while the microgranite dykes/sheets crosscut all the previous granitoids. A U-Pb zircon age of 576 + 3 Ma was obtained for the Serrinha granite. This age is interpreted as age of the peak of the regional ductile deformational event (D3) and of the associated the E-W Rio Jacu shear zone, which control the emplacement of the Neoproterozoic syntectonic plutons. The porphyrytic granitoids show monzogranitic composition, transitional between peraluminous and metaluminous types, typically of the high potassium subalkaline-calc-alkaline series. The intermediate-to-mafic enclaves present vary from quartz diorite to tonalite/granodiorite, with metaluminous, shoshonitic affinity. The diorites are generally quartz-monzodiorite in composition, with metaluminous, subalkaline affinity. They display coarse-grained, inequigranular, porphyrytic texture, with predominance of plagioclase phenocrystals immersed in a matrix composed of biotite and pyroxenes. The microporphyrytic granites are essentially monzogranites of fine- to medium-grained texture, whereas microgranite dikes/sheets varying from monzogranites to syenogranites, with fine to media texture, equigranular. The diversified magmatism occurring at a relatively small surface associated with shear zones, suggests lithospheric dimensions for such structures, with magma extractions from different depths within the lower crust and upper mantle. The geological, geochemical and geochronological characteristics of the Serrinha plutonic suite suggest a pos-collisional geodynamic context for the Neoproterozoic magmatism. Thermobarometric data show emplacement conditions in the range 5-6 kbar (AlTamphibole) and 730-740°C (plagioclase-amphibole) for the porphyrytic granitoids (Serrinha body) and the intermediate-to-mafic enclaves
Resumo:
During the Brasiliano-Pan-African Orogeny, West Gondwana formed by collisional processes around the Sao Francisco-Congo Craton. The Ribeira belt, in southeastern Brazil, resulted from northwestward collision (650-600 Ma), followed by large-scale northeast-southwest dextral strike-slip shear movements related to late-collisional escape tectonics (ca 600 Ma).In São Paulo State, three groups, also interpreted as terranes, are recognised in the Ribeira Belt, the Embu, Itapira and Sao Rogue Groups. The Embu and Itapira Groups are formed of sillimanite-gneisses, schists and migmatites intruded by Neoproterozoic calc-alkaline granitoids, all thrusted northwestward. The Sao Rogue Group is composed of metasediments and metavolcanics in greenschist-facies. Its deformation indicates a transpressional regime associated with tectonic escape. Sub-alkaline granites were emplaced in shallow levels during this regime. Microstructural studies along the Itu, Moreiras and Taxaquara Shear Zones demonstrate the coexistence of horizontal and Vertical displacement components during the transpressional regime. The vertical component is regarded as responsible for the lateral juxtaposition of different crustal levels. (C) 1999 Elsevier B.V. Limited. All rights reserved.
Resumo:
Uranium-lead zircon ages between 660 and 640 Ma, obtained from a series of calc-alkaline orthogneisses and plutons in southeast Brazil's Central Mantiqueira Province, suggest that a significant period of magmatism occurred in this region prior to the collisional assembly of West Gondwana (presently constrained in the region between ca. 625 and 580 Ma). While the nature of this earlier magmatism is presently unclear, some preliminary Sm-Nd data suggest that these magmas were not solely derived from the Paleoproterozoic lithosphere, but appear to represent hybrid products of Paleoproterozoic and Neoproterozoic sources. As such hybrid mixtures have been most commonly observed in continental are settings, it is possible that the 660 to 640 Ma magmatism represents are magmatism that resulted from subduction of Neoproterozoic oceanic crust during early precollisional convergence and closure of a branch of either the Adamastor or Goianides oceans.
Resumo:
The Brazilian Granitic Province from southeastern Mato Grosso do Sul and Mato Grosso region, central western Brazil, can be divided into two major groups and/or magmatic events related to the evolution of the Paraguay Fold Belt. The southern portion crops out in Mato Grosso do Sul State and is constituted by the Taboco, Rio Negro, Coxim and Sonora massifs forming NE-SW oriented, elongated small intrusions. The north portion crops out in Mato Grosso State and is constituted by the São Vicente, Araguaiana and Lajinha batholiths. Lithogeochemical aspects of the northern granites point to Type-I granites ranging from K calc-alkaline to high-K, peraluminous to metaluminous in composition, generated in an environment of continental collision and/or post- collision decompression. The southern granites are Type-I, from K calc-alkaline to high-K, peraluminous to subordinate metalummous, in a syn-collision continental arc environment with the exception of some pre-collisional facies from the Rio Negro Massif. The southern granites have less SiO 2 and K 2O, and are less differentiated and evolved than granites from the northern region. The four southern granites can be grouped into two subordinate sets with the degree of differentiation increasing from South (Taboco and Rio Negro) to North (Coxim and Sonora). The granitic rocks are characterized by a magmatism generated by melting of material from the lower crust which suggests that in this province the formation from non-cogenetic magmas with diversified compositions and distinct degrees of fractioning reaching more steady consolidated environments at the end of the collisional event in the southeastern Amazonian Craton.
Resumo:
The Neoproterozoic granitogenesis related to the Central Mantiqueira Province comprise the calc alkaline to alkaline granitoid complexes of Sorocaba, San Francisco, São Roque, Ibiúna and Piedade. These complexes occur in a ruptil tectonic to tardi (Sn+3) event. The emplacement of the different facies in transtractives structures of the pull-apart type are characterized in the area by the main transcurrent shear zones of Taxaquara-Pirapora, Itu-Jundiuvira, Moreiras, Cangüera and Caucáia of ENE-WSW general direction. The massifs present complex internal architecture characterized by intrusions in restrict initial phase of intermediate equigranular nature. Also present a main phase of porfiroid monzo and sienogranite that fragments the previous phase, followed by lateral accretion of equi to inequigranular material, and in some cases by the accretion of late phases of circular bodies of porfiroid rapakivi granites, and a late to final phase of aplitic to pegmatitic composition. This magmatism grew with the intrusions of successive magmatic pulses, partially controlled by many reactivations of the shear zones. The REE also suggest that the magmatic phases are similar, synchronous and repetitive in four of the complexes in both domains, present in the São Francisco Complex. The crystallization starts from accretion processes, but compositionally quite different from the others. The variation in compositions and ages (TDM) for these granites reflect the derivation from different sources developed under different magmatic conditions, followed by processes of contamination that frequently occur in the crust.
Resumo:
The Rio Apa Massif corresponds to the southeastern portion of the Amazonian Craton and crops out in the Mato Grosso do Sul State, Brazil. It is constituted by rocks of paleoproterozoic age of Rio Apa Complex, Alto Tererê Group and the plutonic-volcanic suites of the Amoguijá Group, subdivided in Alumiador Intrusive suits and Serra da Bocaina Volcanic. The Volcanic Suite is represented by São Francisco and Bocaina mountains and is constituted by terms of the composition of alkali - rhyolitic to rhyolitic, including in minor amounts riodacite, andesite and dacite. It consists of a variety of textual subvolcanic rocks, volcanic and varied volcanoclastics. The pyroclastic deposits are very expressive and consist of pyroclastic particle immerse in aphanitic matrix, fine grained or amorphous, where quartz, feldspar, chlorite, sericite, microlithes of carbonate, sparse spherulites and reliquiar volcanic glass can be distinguished. The pyroclastic rocks are represented by breccias, ignimbrites, agglomerate, tuffs, lapillistones and pumices and contain commonly vitroclasts, lithoclasts and crystalloclasts, pumices, fiammes, glass shards, spherulites, vesicles and amygdales. They are calc-alkaline rocks with dominant peraluminous character high to middle potassium series and define a sin-colisional dominant tectonic and are genetically associated to the evolution of the Amoguijá Magmatic Arc.
Resumo:
Rio Branco Rapakivi Batholith is located on the southwestern portion of the Amazonian Craton in Mato Grosso and belongs to the Cachoeirinha Tectonic Domain, part of the Rio Negro-Juruena Geochronological Province, Central Brasil. The batholith is constituted by microgabbros to quartz microgabbros and microdiorites to quartz microdiorites, middle to fine-grained equigranular to porphyritic varieties form the Rio Branco Intrusive Basic Suite, showing a discontinuous distribution and located near the margins of the intrusion.Majorly constituted by porphyritic, granophyric and isotropic facies of Rio Branco Intrusive Acid Suit which is composed by older dark red rapakivi monzogranites to quartz monzonites and quartz sienites (1403±0.6 Ma) and the younger red rapakivi leuco-monzogranites (1382±49 Ma) and late equigranular to pegmatitic monzogranites. The magmatism is constituted by two distinct magmas related to the end of the collisional event of Cachoeirinha Orogeny, one with alkaline basalts generated in an intraplate environment and the other postorogenic to anorogenic with peraluminous to metaluminous compositions and define a high-K calc-alkaline to shoshonitic magmatism in transition among the I- and A-types. The contacts are marked by extensive mafic sills and dikes of alkaline basalts derived from intraplate environment of the Salto do Céu Intrusive Basic Suite (±808 Ma) associate to the Sunsás-Aguapei Orogenic Belt and metasedimentary rocks of the Aguapeí Grup.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)