970 resultados para brain cell karyotype


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The involvement of voltage-gated calcium channels in the survival of immature CNS neurons was studied in aggregating brain cell cultures by examining cell type-specific effects of various channel blockers. Nifedipine (10 microM), a specific blocker of L-type calcium channels, caused a pronounced and irreversible decrease of glutamic acid decarboxylase activity, whereas the activity of choline acetyltransferase was significantly less affected. Flunarizine (1-10 microM, a relatively unspecific ion channel blocker) elicited similar effects, that were attenuated by NMDA. The glia-specific marker enzymes, glutamine synthetase and 2',3'-cyclic nucleotide 3'-phosphohydrolase, were affected only after treatment with high concentrations of nifedipine (50 microM) or NiCl2 (100 microM, shown to block T-type calcium channels). Nifedipine (50 microM), NiCl2 (100 microM), and flunarizine (5 microM) also caused a significant increase in the soluble nucleosome concentration, indicating increased apoptotic cell death. This effect was prevented by cycloheximide (1 microM). Furthermore, the combined treatment with calcicludine (10 nM, blocking L-type calcium channels) and funnel-web spider toxin-3.3 (100 nM, blocking T-type channels) also caused a significant increase in free nucleosomes as well as a decrease in glutamic acid decarboxylase activity. In contrast, cell viability was not affected by peptide blockers specific for N-, P-, and/or Q-type calcium channels. Highly differentiated cultures showed diminished susceptibility to nifedipine and flunarizine. The present data suggest that the survival of immature neurons, and particularly that of immature GABAergic neurons, requires the sustained entry of Ca2+ through voltage-gated calcium channels.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gene duplication was prevalent during hominoid evolution, yet little is known about the functional fate of new ape gene copies. We characterized the CDC14B cell cycle gene and the functional evolution of its hominoid-specific daughter gene, CDC14Bretro. We found that CDC14B encodes four different splice isoforms that show different subcellular localizations (nucleus or microtubule-associated) and functional properties. A microtubular CDC14B variant spawned CDC14Bretro through retroposition in the hominoid ancestor 18-25 million years ago (Mya). CDC14Bretro evolved brain-/testis-specific expression after the duplication event and experienced a short period of intense positive selection in the African ape ancestor 7-12 Mya. Using resurrected ancestral protein variants, we demonstrate that by virtue of amino acid substitutions in distinct protein regions during this time, the subcellular localization of CDC14Bretro progressively shifted from the association with microtubules (stabilizing them) to an association with the endoplasmic reticulum. CDC14Bretro evolution represents a paradigm example of rapid, selectively driven subcellular relocalization, thus revealing a novel mode for the emergence of new gene function

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The biochemical development of rotation-mediated aggregating brain cell cultures was studied in a serum-free chemically defined medium in the presence (complete medium) or the absence of triiodothyronine (T3). The expression of 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) and myelin basic protein (MBP), two myelin components, was temporally dissociated in brain cell aggregating cultures grown in a complete medium. CNP increased from day 8 and reached a plateau around day 25. MBP accumulated rapidly from the third until the fourth week in culture. The total protein content increased gradually until day 25. The activity of ornithine decarboxylase (ODC) used as an index of cell growth and differentiation, showed two well-defined peaks of activity. The first peak reached a maximum at day 6 and correlated with both the highest DNA content and the peak of [3H]-thymidine incorporation. The second peak of ODC activity (from day 19 to 35) coincided with the differentiation of oligodendrocytes. These results confirm that aggregating fetal rat brain cells cultured in a serum-free chemically defined medium undergo extensive differentiation. Addition of T3 to the culture medium doubled the CNP activity by day 16. In contrast, MBP was only slightly increased by day 16, reaching at 25 and 35 days 8 to 10-fold higher values than the untreated cultures. When T3 was removed between day 16 and 25, CNP decreased almost to control values and MBP failed to accumulate. Moreover, when T3 was reintroduced into the medium (between day 25 and 35), CNP activity was restored and MBP content was partially corrected. T3 treatment produced a concentration-dependent increase in ODC activity which was observed only around day 19. The first peak of ODC activity observed at culture day 6 was independent of the presence of T3. These results obtained in brain cell cultures emphasize the direct effect of T3 on myelination.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neurotoxic effects of the environmentally abundant mycotoxin Ochratoxin A (OTA) were studied in histotypic 3D rat brain cell cultures, comprising all brain cell types. Cultures were exposed to nanomolar OTA concentrations and samples were collected 48h after a single exposure, or after 10 days of repeated administration. OTA-induced changes in gene- and protein expression, as well as alterations in cell morphology were assessed. Forty-eight-hour OTA exposure resulted in a disruption of the neuronal cytoskeleton and reduced expression of several oligodendrocyte-specific markers indicative of demyelination. Astrocyte disturbances were revealed by a decrease in two astrocytic proteins involved in regulation of inflammatory responses, metallothioneins I and II. Repeated OTA administration induced a neuroinflammatory response, as visualized by an increase of isolectin B4 labelled cells, increased expression of pro-inflammatory cytokines, and detection of macrophagic ED1/CD68 positive cells, as well as an upregulation of neurodegenerative M1 microglial phenotype markers. Partial recovery from OTA-induced deleterious effects on oligodendrocytes and astrocytes was achieved by co-treatment with sonic hedgehog (SHH). In addition, metallothionein I and II co-treatment partially restored OTA-induced effects on oligodendrocytes after 48h, and modulated microglial reactivity after 10 days. These results suggest that OTA-exposure affects Shh-signalling, which in turn may influence both oligodendrocytes and astrocytes. Furthermore, the primarily astrocytic proteins MTI/MTII may affect microglial activation. Thus the neuroinflammatory response appears to be downstream of OTA-induced effects on demyelination, axonal instabilities and astrocytes disturbances. In conclusion, repeated OTA-exposure induced a secondary neuroinflammatory response characterized by neurodegenerative M1 microglial activation and pro-inflammatory response that could exacerbate the neurodegenerative process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The influence of dexamethasone on the development of neurons and oligodendrocytes was studied in serum-free, aggregating rat brain cell cultures. Synaptogenesis and myelination occur in this culture system. The concentration of myelin basic protein and the activity of 2',3'-cyclic nucleotide 3'-phosphodiesterase were used as oligodendroglia and myelin markers. Choline acetyltransferase and acetylcholinesterase served as neuronal markers, glutamine synthetase reflected astrocyte differentiation, while ornithine decarboxylase served as a general marker for cell growth and maturation. This study showed that dexamethasone stimulated the differentiation of cholinergic neurons and astrocytes. The effect of dexamethasone on oligodendroglial differentiation and myelination depended on the stage of development: during the early phase of myelination dexamethasone had a stimulatory effect, whereas at a later stage it showed a significant inhibition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this present thesis Superparamagnetic Iron Oxide Nanoparticles (SPIONs) with 9 nm in diameter were selected as nanocarriers in order to study their potential application as drug delivery systems. Therefore the aim of the study was to demonstrate the proof of concept by establishing an efficient system of drug delivery, which would be a valuable tool in biomedical applications, such as the treatement of cancer, by reducing the side effects due to administration of a high concentration of therapeutic agents. As demonstrated in a previous study, the uptake of SPIONs by tumoral human cells was enhanced by the presence of amino groups on their surface. The stabilization of SPIONs were then performed and optimized by the coating of poly(vinylalcohol) and poly(vinylalcohol/vinylamine). Such nanoparticles were known as aminoPVA-SPIONs. The toxicity and the inflammatory reaction of aminoPVA-SPIONs were evaluated in order to establish their potentiel use in the human body. The results demonstrated that the human cells were able to invaginate aminoPVA-SPIONS without revealing any toxicity and inflammatory reaction. The analysis by transmission electron microscopy (TEM), scanning electron microscopy (SEM), cryo-TEM, confocal microscopy and histological staining (i.e. Prussian Blue) showed that the iron oxide core of SPIONs were located in the cytoplasm of cells and concentrated in vesicles. The evaluation of the mechanism of uptake of aminoPVA-SPIONs revealed that their uptake by monolayer cell culture was performed via an active mechanism, which was achieved by a clathrin-mediated endocytosis. Consequently, it was suggested that aminoPVA-SPIONs were good candidates as nanocarriers in drug delivery systems, which were able to reach the cytoplasm of cells. Their incubation with three-dimensional models mimicing tissues, such as differentiated rat brain cell-derived aggregates and spheroids, revealed that aminoPVA-SPIONs were able to invade into deep cell layers according to the stage of growth of these models. In the view of these promising results, drug-SPIONs were prepared by the functionalization of aminoPVA-SPIONs via a biological labile chemical bond by one of these three antineoplastic agents, which are widely used in clinical practice: 5-fluorourdine (Fur) (an antimetabolite), or camptothecin (CPT) (a topoisomerase inhibitor) or doxorubicin (DOX) (an anthracycline which interfere with DNA). The results shown that drug-SPIONs were internalized by human melanoma cells, as it was expected due the previous results with aminoPVA-SPIONs, and in addition they were active as anticancer agents, suggesting the efficient release of the drug from the drug-SPIONs. The results with CPT-SPIONs were the most promising, whereas DOX- SPIONs did not demonstrate a prononced activity of DOX. In conclusion, the results demonstrated that functionalized iron oxide nanoparticles are a promising tool in order to deliver therapeutic agents. - Dans le cadre de ce travail de thèse, les nanoparticules superparamagnétiques d'oxyde de fer (SPIONs) ayant un diamètre de 9 nm ont été choisies, afin d'étudier leur éventuelle utilisation dans un système de délivrance d'agents thérapeutiques. Ainsi le but de la thèse est de démontrer la faisabilité de fabriquer un système efficace de délivrance d'agents thérapeutiques, qui serait un outil intéressant dans le cadre d'une utilisation biomédicale, par exemple lors du traitement du cancer, qui pourrait réduire les effets secondaires provoqués par le dosage trop élevé de médicaments. Comme il a été démontré dans une précédente étude, l'invagination des SPIONs par des cellules humaines cancéreuses est améliorée par la présence de groupes fonctionnels amino à leur surface. La stabilisation des SPIONs est ainsi effectuée et optimisée par l'enrobage de poly(vinylalcool) et de (poly(vinylalcool/vinylamine), qui sont connues sous le nom de aminoPVA-SPIONs. La toxicité et la réaction inflammatoire des aminoPVA-SPIONs ont été évaluées dans le but de déterminer leur potentielle utilisation dans le corps humain. Les résultats démontrèrent que les cellules humaines sont capables d'invaginer les aminoPVAS-SPIONs sans induire une réaction toxique ou inflammatoire. L'analyse par la microscopie électronique en transmission électronique (TEM), la microscopie électronique à balayage (SEM), le cryo-microscopie électronique (SEM), la microscopie confocale et la coloration histologique (par ex, le bleu de Prusse) a montré que l'oxyde de fer des SPIONs est localisé dans le cytoplasme des cellules et est concentré dans des vesicules. L'évaluation du méchanisme d'invagination des aminoPVA-SPIONs ont révélé que leur invagination par des monocultures de cellules est effectué par un méchanisme actif, contrôlé par une endocytose induite par les clathrins. Par conséquent, les aminoPVA-SPIONs sont de bons candidats en tant que transporteurs (nanocamers) dans un système de délivrance d'agents thérapeuthique, capable d'atteindre le cytoplasme des cellules. Leur incubation avec des modèles tridimenstionnels imitant les tissues, tels que les aggrégats de cellules de cerveau différenciées et les sphéroïdes, a montré que les aminoPVA-SPIONs sont capable de pénétrer dans les couches profondes des modèles, selon l'état d'avancement de leur croissance. En vue de ces résultats prometteurs, les drug-SPIONs ont été préparés en fonctionalisant les aminoPVA-SPIONs par le biai d'une liaison chimique labile par un des trois agents thérapeutiques, déjà utilisé en pratique : 5-fluorourdine (Fur) (un antimétabolite), or camptothecin (CPT) (un inhibiteur de la topoisomerase) or doxorubicin (DOX) (un anthracycline qui interfère avec le DNA). Les résultats ont montré que les drug-SPIONs sont capable d'être internalisés par les mélanomes, comme il a été attendu d'après les résultats obtenus précédemment avec les aminoPVA-SPIONs, et de plus, les drug-SPIONs sont actifs, ce qui suggère un relargage efficace de l'agent thérapeutique du drug-SPIONs. Les résultats obtenus avec les CPT-SPIONs sont les plus prometteurs, tandis que ceux avec les DOX-SPIONs, ce n'est pas le cas, dont l'activité thérapeutique de DOX n'a pas été aussi efficace. En conclusion, les résultats ont pu démontrer que les nanoparticules d'oxyde de fer fonctionnalisées sont un outil prometteur dans la délivrance d'agents thérapeutiques.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stimulation of prostaglandin (PG) release in rat astroglial cultures by various substances, including phorbol esters, melittin, or extracellular ATP, has been reported recently. It is shown here that glucocorticoids (GCs) reduced both basal and stimulated PGD2 release. Hydrocortisone, however, did not inhibit ATP-, calcium ionophore A23187-, or tetradecanoyl phorbol acetate (TPA)-stimulated arachidonic acid release, and only TPA stimulations were affected by dexamethasone. GC-mediated inhibition of PGD2 release thus appeared to exclude regulation at the phospholipase A2 (PLA2) level. Therefore, the effects of GCs on the synthesis of lipocortin I (LC I), a potent, physiological inhibitor of PLA2, were studied in more detail. Dexamethasone was not able to enhance de novo synthesis of LC I in freshly seeded cultures and failed to increase LC I synthesis in 2-3-week-old cultures. It is surprising that LC I was the major LC synthesized in those cultures, and marked amounts accumulated with culture time, reaching plateau levels at approximately day 10. In contrast, LC I was barely detectable in vivo. This tonic inhibition of PLA2 is the most likely explanation for unsuccessful attempts to evoke PG release in astrocyte cultures by various physiological stimuli. GC receptor antagonists (progesterone and RU 38486) given throughout culture time reduced LC I accumulation and simultaneously increased PGD2 release. Nonetheless, a substantial production of LC I persisted in the presence of antagonists. Therefore, LC I induction did not seem to involve GC receptor activation. This was confirmed in serum- and GC-free brain cell aggregate cultures. Here also a marked accumulation of LC I was observed.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aggregate cultures of mixed glial cells, as well as of enriched astrocytes and oligodendrocytes were prepared, and maintained in serum-free medium for up to 25 days. Biochemical measurements of both neuron-specific and glia-specific enzyme activities showed that these three types of aggregate cultures were virtually devoid of neurons. Astrocyte-enriched cultures were greater than 95% pure, with oligodendrocytes as the only apparent contaminant, whereas oligodendrocyte-enriched cultures still contained a considerable proportion of astrocytes. In all these neuron-free aggregate cultures both astrocytes and oligodendrocytes attained a high degree of maturation. These findings were confirmed by morphological examinations, and by immunofluorescence studies. Furthermore, ultrastructural as well as immunocytochemical investigations using antibodies to myelin basic protein revealed that all three types of glial cell aggregate cultures contained myelin membranes, indicating that the presence of axons is not a prerequisite for the formation of myelin.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Activation of microglia is a well-documented phenomenon associated with diverse pathological conditions of the central nervous system. In order to investigate the involvement of microglial cells in the neurotoxic action of the heavy metal compound trimethyltin, three-dimensional brain cell cultures were treated during an early developmental period, using concentrations at or below the limit of cytotoxicity. Microglial cells were studied by cytochemical staining, using horseradish peroxidase-conjugated B4 isolectin (GSI-B4). In parallel, neurotoxic effects were assessed by determining the content of synaptophysin and synapsin I, both in the total homogenates and in the synaptosomal fraction of the cultures. Changes in the content of the specific growth cone protein, GAP-43, were also analyzed. It was found that low, non-cytotoxic concentrations of TMT (10(-9) to 10(-8) M) caused a significant increase in the number and/or the clustering of microglial cells. A decrease in the synaptic protein (synapsin I, synaptophysin) content was detected at 10(-8) M of TMT in synaptosomal fractions, whereas in the total homogenates, changes in synaptic proteins and GAP-43 were observed only at the cytotoxic TMT concentration (10(-6) M). Although it remains to be shown whether the microglial response is caused by direct or indirect action of TMT, the present findings show that microglial responsiveness can be detected prior to any sign of neuronal degeneration, and may serve as a sensitive indicator for heavy metal neurotoxicity in the brain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

If the importance of triiodothyronine (T3) on brain development including myelinogenesis has long been recognized, its mechanism of action at the gene level is still not fully elucidated. We studied the effect of T3 on the expression of myelin protein genes in aggregating brain cell cultures. T3 increases the concentrations of mRNA transcribed from the following four myelin protein genes: myelin basic protein (Mbp), myelin-associated glycoprotein (Mag), proteolipid protein (Plp), and 2',3'-cyclic nucleotide 3'-phosphodiesterase (Cnp). T3 is not only a triggering signal for oligodendrocyte differentiation, but it has continuous stimulatory effects on myelin gene expression. Transcription in isolated nuclei experiments shows that T3 increases Mag and Cnp transcription rates. After inhibiting transcription with actinomycin D, we measured the half-lives of specific mRNAs. Our results show that T3 increases the stability of mRNA for myelin basic protein, and probably proteolipid protein. In vitro translation followed by myelin basic protein-specific immunoprecipitation showed a direct stimulatory effect of T3 on myelin basic protein mRNA translation. Moreover, this stimulation was higher when the mRNA was already stabilized in culture, indicating that stabilization is achieved through mRNA structural modifications. These results demonstrate the diverse and multiple mechanisms of T3 stimulation of myelin protein genes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There is a need for more efficient methods giving insight into the complex mechanisms of neurotoxicity. Testing strategies including in vitro methods have been proposed to comply with this requirement. With the present study we aimed to develop a novel in vitro approach which mimics in vivo complexity, detects neurotoxicity comprehensively, and provides mechanistic insight. For this purpose we combined rat primary re-aggregating brain cell cultures with a mass spectrometry (MS)-based metabolomics approach. For the proof of principle we treated developing re-aggregating brain cell cultures for 48h with the neurotoxicant methyl mercury chloride (0.1-100muM) and the brain stimulant caffeine (1-100muM) and acquired cellular metabolic profiles. To detect toxicant-induced metabolic alterations the profiles were analysed using commercial software which revealed patterns in the multi-parametric dataset by principal component analyses (PCA), and recognised the most significantly altered metabolites. PCA revealed concentration-dependent cluster formations for methyl mercury chloride (0.1-1muM), and treatment-dependent cluster formations for caffeine (1-100muM) at sub-cytotoxic concentrations. Four relevant metabolites responsible for the concentration-dependent alterations following methyl mercury chloride treatment could be identified using MS-MS fragmentation analysis. These were gamma-aminobutyric acid, choline, glutamine, creatine and spermine. Their respective mass ion intensities demonstrated metabolic alterations in line with the literature and suggest that the metabolites could be biomarkers for mechanisms of neurotoxicity or neuroprotection. In addition, we evaluated whether the approach could identify neurotoxic potential by testing eight compounds which have target organ toxicity in the liver, kidney or brain at sub-cytotoxic concentrations. PCA revealed cluster formations largely dependent on target organ toxicity indicating possible potential for the development of a neurotoxicity prediction model. With such results it could be useful to perform a validation study to determine the reliability, relevance and applicability of this approach to neurotoxicity screening. Thus, for the first time we show the benefits and utility of in vitro metabolomics to comprehensively detect neurotoxicity and to discover new biomarkers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using reaggregating rat brain cell cultures at two different stages of differentiation, we examined the biochemical effects of a 10-day treatment with nanomolar concentrations of methylmercuric chloride (monomethylmercury), in the presence or absence of promoters of hydroxyl radical formation (10 microM copper sulphate plus 100 microM ascorbate). A decrease in total protein content accounted for the general cytotoxicity of these compounds, whereas selective effects were assessed by determining the activities of cell type-specific enzymes. Methylmercury, up to 100 nM, as well as the copper ascorbate mixture, when applied separately, induced no general cytotoxicity, and only slight effects on neuronal parameters. However, when applying 100 nM methylmercury and the copper-ascorbate mixture together, a drastic decrease in neuronal and glial parameters was found. Under these conditions, the content of reactive oxygen species, assessed by 2',7'-dichlorofluorescin oxidation, increased greatly, while the activities of antioxidant enzymes decreased. In the presence of copper and ascorbate, differentiated cultures appeared more resistant than immature ones to low methylmercury concentrations (1-10 mM), but did undergo similar changes in both cell type-specific and antioxidant enzyme activities at 100 nM methylmercury. These results suggest that in prooxidant conditions low doses of mercury can become much more deleterious for the central nervous system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The earliest sign of neurotoxicity observed after exposure of three-dimensional brain cell cultures to low concentrations of mercury compounds is a microglial reaction. We hypothesized that an induction of apoptosis by mercury compounds could be an activating signal of the microglial reaction. Aggregating brain cell cultures of fetal rat telencephalon were treated for 10 days with either mercury chloride or monomethylmercury chloride at noncytotoxic concentrations during two developmental periods: from day 5 to 15, corresponding to an immature stage, and from day 25 to 35 corresponding to a mature stage. Apoptosis was evaluated by the TUNEL technique. It was found that both mercury compounds caused a significant increase in the number of apoptotic cells, but exclusively in immature cultures exhibiting also spontaneous apoptosis. Double staining by the TUNEL technique combined with either neuronal or astroglial markers revealed that the proportion of cells undergoing apoptosis was highest for astrocytes. Furthermore neither an association nor a colocalization was found between apoptotic cells and microglial cells. In conclusion, it appears that the induction of apoptosis by mercury compounds in immature cells is only an acceleration of a spontaneously occurring process, and that it is not a directly related to the early microglial reaction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neurofilaments (NF), the main components of axonal cytoskeleton, are known to be involved in several neurodegenerative diseases. It has been reported that methylmalonate and propionate affect phosphorylation of NFs. In an in vitro model for methylmalonic aciduria our group has recently shown that 2- methylcitrate (2-MCA) is the most toxic metabolite for developing brain cells. Here, we studied the effects of repetitive administration of 1mM 2- MCA every 12 hours over 3 days on the development of NFs in 3D organotypic rat brain cell cultures. By immunohistochemistry with antibodies specific for the different NF subunits (light NFL, medium NFM, heavy NFH) as well as for phosphorylated (p) and glycosylated (g) forms of NFs, we observed a decrease of axonal labeling and a disorganized axonal pattern. Interestingly, signal retention of p-NFM and g-NFM was observed in neuronal soma. Western blotting showed the decrease of NFL and NFH subunits. Taken together, our data show that 2-MCA alters expression of the different NF subunits as well as their post-translational modifications. This likely results in disturbed NF assembly, abnormal accumulation of NF in neuronal cell bodies and impairment of axonal development.We conclude thatNF are involved in 2-MCA-induced neurodegeneration in methylmalonic aciduria.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The discovery of hypocretins (orexins) and their causal implication in narcolepsy is the most important advance in sleep research and sleep medicine since the discovery of rapid eye movement sleep. Narcolepsy with cataplexy is caused by hypocretin deficiency owing to destruction of most of the hypocretin-producing neurons in the hypothalamus. Ablation of hypocretin or hypocretin receptors also leads to narcolepsy phenotypes in animal models. Although the exact mechanism of hypocretin deficiency is unknown, evidence from the past 20 years strongly favours an immune-mediated or autoimmune attack, targeting specifically hypocretin neurons in genetically predisposed individuals. These neurons form an extensive network of projections throughout the brain and show activity linked to motivational behaviours. The hypothesis that a targeted immune-mediated or autoimmune attack causes the specific degeneration of hypocretin neurons arose mainly through the discovery of genetic associations, first with the HLA-DQB1*06:02 allele and then with the T-cell receptor α locus. Guided by these genetic findings and now awaiting experimental testing are models of the possible immune mechanisms by which a specific and localised brain cell population could become targeted by T-cell subsets. Great hopes for the identification of new targets for therapeutic intervention in narcolepsy also reside in the development of patient-derived induced pluripotent stem cell systems.