923 resultados para bovine viral diarrhea
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Bovine papillomavirus type 1 (BPV-1) induces fibropapillomas in its natural host and can transform fibroblasts in culture. The viral genome is maintained as an episome within fibroblasts, which has allowed extensive genetic analyses of the viral functions required for DNA replication, gene expression, and transformation. Much less is known about BPV-1 gene expression and replication in bovine epithelial cells because the study of the complete viral life cycle requires an experimental system capable of generating a fully differentiated stratified bovine epithelium. Using a combination of organotypic raft cultures and xenografts on nude mice, we have developed a system in which BPV-1 can replicate and produce infectious viral particles. Organotypic cultures were established with bovine keratinocytes plated on a collagen raft containing BPV-1-transformed fibroblasts. These keratinocytes were infected with virus particles isolated from a bovine wart or were transfected with cloned BPV-1 DNA. Several days after the rafts were lifted to the air interface, they were grafted on nude mice. After 6–8 weeks, large xenografts were produced that exhibited a hyperplastic and hyperkeratotic epithelium overlying a large dermal fibroma. These lesions were strikingly similar to a fibropapilloma caused by BPV-1 in the natural host. Amplified viral DNA and capsid antigens were detected in the suprabasal cells of the epithelium. Moreover, infectious virus particles could be isolated from these lesions and quantitated by a focus formation assay on mouse cells in culture. Interestingly, analysis of grafts produced with infected and uninfected fibroblasts indicated that the fibroma component was not required for productive infection or morphological changes characteristic of papillomavirus-infected epithelium. This system will be a powerful tool for the genetic analysis of the roles of the viral gene products in the complete viral life cycle.
Resumo:
Background. Low back pain is an increasing global health problem, which is associated with intervertebral disc (IVD) damage and degeneration. Major changes occur in the nucleus pulposus (NP), with the degradation of the extracellular matrix (ECM).1 Further studies showed that growth factors from transforming growth factor β (TGFβ) and bone morphogenic proteins (BMP) family may induce chondrogenic differentiation of mesenchymal stem cells (MSC).2 Focusing on non-viral gene therapies and their possible translation into the clinics, we investigated if GDF6 (syn. BMP13 or CDMP2) can induce regeneration of degraded NP. We hypothesized that IVD transfected with plasmid over-expressing GDF6 also up-regulates other NP- and chondrogenic cell markers and enhances ECM deposition. Methods. Bovine nucleus pulposus (bNPC) and annulus fibrosus cells (bAFC) were harvested from bovine coccygeal IVD. Primary cells were then electroporized with plasmid GDF6 (Origene, vector RG211366) by optimizing parameters using the Neon Transfection system (Life Technologies, Basel). After transfection, cells were cultured in 2D monolayer or 3D alginate beads for 7, 14 or 21 days. Transfection efficiency of pGDF6 was analyzed by immunohistochemistry and fluorescent microscopy. Cell phenotype was quantified by real-time RT-PCR. To test a non-viral gene therapy applied directly to 3D whole organ culture, coccygeal bovine IVDs were harvested as previously described. Bovine IVDs were transfected by injection of plasmid GDF6 into the center. Electroporation was performed with ECM830 Square Wave Electroporation System (Harvard Apparatus, MA) using 2-needle array electrode or tweezertrodes. 72 h after tranfection discs were fixed and cryosectioned and analyzed by immunofluorescence against GDF6. Results. RT-PCR and immunohistochemistry confirmed up-regulation of GFP and GDF6 in the primary bNPC/bAFC culture. The GFP-tagged GDF6 protein, however, was not visible, possibly due to failure of dimer formation as a result of fusion structure. Organ IVD culture transfection revealed GDF6 positive staining in the center of the disc using 2-needle array electrode. Results from tweezertrodes did not show any GDF6 positive cells. Conclusion. Non-viral transfection is an appealing approach for gene therapy as it fulfills the translational safety aspects of transiency and lacks the toxic effects of viral transduction. We identified novel parameters to successfully transfect primary bovine IVD cells. For transfection of whole IVD explants electroporation parameters need to be further optimized. Acknowledgements. This project was funded by the Lindenhof Foundation (Funds “Research & Teaching”) Project no. 13-02-F. The imaging part of this study was performed with the facility of the Microscopy Imaging Center (MIC), University of Bern. References. Roughly PJ (2004): Spine (Phila), 29:2691-2699 Clarke LE, McConell JC, Sherratt MJ, Derby B, Richardson SM, Hoyland JA (2014), Arthritis Research & Therapy, 16:R67
Resumo:
Neonatal calf diarrhea is a multi-etiology syndrome of cattle and direct detection of the two major agents of the syndrome, group A rotavirus and Bovine coronavirus (BCoV) is hampered by their fastidious growth in cell culture. This study aimed at developing a multiplex semi-nested RT-PCR for simultaneous detection of BCoV (N gene) and group A rotavirus (VP1 gene) with the addition of an internal control (mRNA ND5). The assay was tested in 75 bovine feces samples tested previously for rotavirus using PAGE and for BCoV using nested RT-PCR targeted to RdRp gene. Agreement with reference tests was optimal for BCoV (kappa = 0.833) and substantial for rotavirus detection (kappa = 0.648). the internal control, ND5 mRNA, was detected successfully in all reactions. Results demonstrated that this multiplex semi-nested RT-PCR was effective in the detection of BCoV and rotavirus, with high sensitivity and specificity for simultaneous detection of both viruses at a lower cost, providing an important tool for studies on the etiology of diarrhea in cattle. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Bovine Herpesvirus type-5 (BoHV-5), which is potentially neuropathogenic, was recently described to be related with reproductive disorders in cows. The objective was to elucidate mechanisms involved in propagation of BoHV-5 in embryonic cells. For this purpose, bovine embryos produced in vitro were assayed for apoptotic markers after experimental infection of oocytes, in vitro fertilization, and development. Host DNA fragmentation was detected with a TUNEL assay, expression of annexin-V was measured with indirect immunofluorescence, and viral DNA was detected with in situ hybridization. Infective BoHV-5 virus was recovered from embryos derived from exposed oocytes after two consecutive passages on Madin-Darby bovine kidney (MDBK) cells. The viral DNA corresponding to US9 gene, localized between nucleotides 126243 to 126493, was detected in situ and amplified. There was no significant difference between the ratio of TUNEL stained nuclei and total cells in good quality blastocysts (0.87 +/- 0.05, mean SD), but there were differences (P < 0.05) between infected (0.18 +/- 0.05) and uninfected blastocysts (0.73 +/- 0.07). The Annexin-V label was more intense in uninfected embryos (0.79 +/- 0.04; P < 0.05). The quality of infected and uninfected embryos was considered equal, with no significant effect on embryonic development. In conclusion, we inferred that BoHV-5 infected bovine oocytes, replicated, and suppressed some apoptotic pathways, without significantly affecting embryonic development. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
We recently demonstrated that Saccharomyces cerevisiae protoplasts can take up bovine papillomavirus type 1 (BPV1) virions and that viral episomal DNA is replicated after uptake. Here we demonstrate that BPV virus-like particles are assembled in infected S. cerevisiae cultures from newly synthesized capsid proteins and also package newly synthesized DNA, including full-length and truncated viral DNA and S. cerevisiae-derived DNA. Virus particles prepared in S. cerevisiae are able to convey packaged DNA to Cos1 cells and to transform C127 cells. Infectivity was blocked by antisera to BPV1 L1 but not antisera to BPV1 E4. We conclude that S. cerevisiae is permissive for the replication of BPV1 virus.
Resumo:
Bovine herpesvirus 1 (BoHV-1) causes major losses in worldwide livestock, affecting the respiratory and reproductive tracts of bovine. In the past decades, the number of cases in Brazil has been gradually increasing. Therefore, it is important to assess the distribution of infection in different regions of the country. In the state of Espírito Santo (ES) the BoHV 1 infection rate in dairy cattle herds is unknown. Thus, the aim of this study was to detect neutralizing antibodies against BoHV-1 in serum samples from 1,161 non-vaccinated cows from 59 dairy cattle herds in 23 municipalities of the Metropolitan, North, Northwest and South macro-regions. The identification of seropositive cows was evaluated by the virus neutralization test. The results showed that of all serum samples evaluated 775 (66.75%) had neutralizing antibodies against BoHV-1. Moreover, all herds were found positive; however, the percentage of positive cows varied among regions; 49.06%, 62.15%, 67.21% and 80.04% for the Metropolitan, South, North and Northwest macro-regions, respectively. In this study, the results clearly indicate the dissemination of the viral agent in dairy cattle in the ES state, requiring the monitoring and control of diseases related to BoHV-1 infection.
Resumo:
The objectives of this study were to determine both the prevalence of microsporidial intestinal infection and the clinical outcome of the disease in a cohort of 40 HIV-infected patients presenting with chronic diarrhea in Rio de Janeiro, Brazil. Each patient, after clinical evaluation, had stools and intestinal fragments examined for viral, bacterial and parasitic pathogens. Microsporidia were found in 11 patients (27.5%) either in stools or in duodenal or ileal biopsies. Microsporidial spores were found more frequently in stools than in biopsy fragments. Samples examined using transmission electron microscopy (n=3) or polymerase chain reaction (n=6) confirmed Enterocytozoon bieneusi as the causative agent. Microsporidia were the only potential enteric pathogens found in 5 of the 11 patients. Other pathogens were also detected in the intestinal tract of 21 patients, but diarrhea remained unexplained in 8. We concluded that microsporidial infection is frequently found in HIV infected persons in Rio de Janeiro, and it seems to be a marker of advanced stage of AIDS.
Resumo:
Despite the importance of understanding the epidemiology of agents responsible for infectious diarrhea in human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) population, the number of articles about this subject is relatively few. The current article summarizes published data on bacterial, fungal, viral and parasitic enteropathogens in the HIV/AIDS seropositive subjects in different countries, regions and localities. In general, there is a great difference in the frequencies of etiological agents due to factors which include immune status, geographical location, climate and socioeconomic conditions. It is important to stress that a great prevalence of infection by emergent agents has been reported in the more advanced stages of AIDS. Therefore, to establish specific treatment depends directly on knowledge of these agents and risk factors associated to their distribution. Moreover, the colonization by potential pathogenic agents verified in these individuals is high thus implicating that they act as carriers. Finally, public health measures of control and prevention must take into consideration the regional previously identified enteropathogens, especially in areas where HIV prevalence is high.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica
Resumo:
En la provincia de Córdoba, estudios serológicos demostraron una alta tasa de infección para el Virus Sincitial Respiratorio Bovino (VSRB). Paralelamente nuestro grupo de investigación aisló por primera vez en Argentina el VSRB (cepa RC-98) dando un paso importante en el reconocimiento de esta enfermedad. En los últimos años se ha incrementado la importancia de este agente debido a la intensificación de los sistemas ganaderos, impulsados y desplazados por la agriculturización. La detección viral en muestras clínicas aún es pobre por inadecuadas técnicas de laboratorio. Por estas razones es necesario optimizar otro método diagnóstico utilizado mundialmente, no desarrollado en nuestro país hasta el presente. Con el advenimiento de la biología molecular se introducen nuevas técnicas como la RT-PCR para el diagnóstico rápido del VSRB, siendo más sensible y específica que el ensayo de ELISA, Inmunofluorescencia, Inmunoperoxidasa y aislamiento viral, además permite detectar la eliminación viral por un período más prolongado en muestras clínicas. La glicoproteína G (Gp G) del VSRB es la proteína menos conservada entre los aislamientos de VSRB y es la que presenta la mayor variabilidad, tanto antigénica como genética. Por secuenciamiento de la Gp G se propusieron seis subgrupos genéticos. La importancia de esta glicoproteína esta representada en el rol que desempeña en la respuesta inmune. La generación de anticuerpos frente a esta es capaz de neutralizar la infección viral. La hipótesis de trabajo se basa en que pueden existir diferencias genómicas importantes de la cepa autóctona, respecto a cepas bovinas de referencia internacional. Se plantean como objetivos conocer las características moleculares (genómicas) de la Gp G de la cepa RC-98 para el futuro desarrollo de inmunógenos y estandarizar una técnica diagnóstica que complemente y enriquezca el diagnóstico de este virus. Se utilizará la cepa RC-98 la cuál se propagará en células MDBK. Para desarrollar la técnica de RT-PCR se extraerá el ARN viral con un kit comercial, a partir del mismo se obtendrá el ADNc y para la PCR se utilizarán 2 juegos de primers que amplifiquen un fragmento del gen de la Gp G. Una vez estandarizada la técnica se trabajará con muestras clínicas, hisopados nasales, lavados broncoalveolares y muestras pulmonares de animales necroipsiados. Al finalizar la investigación se espera conocer las características genómicas de la cepa RC-98. Se contará con una nueva herramienta diagnóstica para la detección rápida y sensible del VSRB. La misma será transferida a laboratorios de diagnostico. Adicionalmente se contará con el secuenciamiento de la Gp G, lo cuál permitirá clasificar la cepa en estudio dentro de los subgrupos genéticos. Este proyecto pretende sentar bases para investigaciones futuras ya que la técnica de PCR posibilita una nueva aproximación al estudio de la patogénesis de la infección viral y permite estudiar la epidemiología molecular de los aislamientos de campo.
Resumo:
La ingeniería genética y la reprogramación de organismos vivos representan las nuevas fronteras biotecnológicas que permitirán generar animales con modificaciones precisas en sus genomas para un sinnúmero de aplicaciones biomédicas y agropecuarias. Las técnicas para inducir modificaciones génicas intencionales en animales, especialmente en especies mayores de interés agropecuario, se encuentran rezagadas si se compara con los avances significativos que se han producido en el área de la transgénesis de roedores de laboratorio, especialmente el ratón. Es así que, el presente proyecto persigue desarrollar y optimizar protocolos para generar embriones bovinos transgénicos para aplicaciones biotecnológicas. La estrategia propuesta, se basa en conseguir la presencia simultánea en el interior celular de una enzima de restricción (I-SceI) más un transgén (formado por casetes de expresión de una proteína fluorescente -ZsGreen1- y neomicina fosfotransferasa). Específicamente, proyectamos estudiar una vía alternativa para generar embriones bovinos transgénicos mediante la incorporación del transgén (casetes ZsGreen1 y neo) flanqueado por sitios I-SceI más la enzima I-SceI al interior del ovocito junto con el espermatozoide durante la técnica conocida como inyección intracitoplasmática de espermatozoides (ICSI). Los embriones así generados se cultivarán in vitro, inspeccionándolos diariamente para detectar la emisión de fluorescencia, indicativa de la expresión de la proteína ZsGreen1. Los embriones que alcancen el estado de blastocisto y expresen el transgén se transferirán quirúrgicamente al útero de ovejas sincronizadas y se mantendrán durante 7 días. Al cabo de este período, los embriones se recolectarán quirúrgicamente del útero ovino y se transportarán al laboratorio para determinar el número de sitios de integración y número de copias del transgén mediante el análisis de su ADN por Southern blot. Se prevé que los resultados de esta investigación permitirán sentar las bases para el desarrollo de métodos eficientes para obtener modificaciones precisas en el genoma de los animales domésticos para futuras aplicaciones biotecnológicas. Genetic engineering and reprogrammed organisms represent the new biotechnological frontiers which will make possible to generate animals with precise genetic modifications for agricultural and biomedical applications. Current methods used to generate genetically modified large animals, lay behind those used in laboratory animals, specially the mouse. Therefore, we seek to develop and optimize protocols to produce transgenic bovine embryos through the use of a non-viral vector. The strategy involves the simultaneous presence inside the cell of a restriction enzyme (I-SceI) and a transgene (carrying cassettes for a fluorescent protein -ZsGreen1- and neomycin phosphotransferase) flanked by restriction sites for the endonuclease. We plan to develop an alternative approach to generate transgenic bovine embryos by coinjecting the transgene flanked by I-SceI restriction sites plus the enzyme I-SceI along with the spermatozoon during the technique known as intracytoplasmic sperm injection (ICSI). Embryos will be cultured in vitro and inspected daily with a fluorescence microscope to characterize transgene expression. Embryos that reach the blastocyst stage and express the transgene will be surgically transfer to the uterus of a synchronized ewe. After 7 days, the embryos will be flushed out the ovine uterus and transported to the laboratory to determine the number of integration sites and transgene copies by Southern blot. We anticipate that results from this research will set the stage for the development of efficient strategies to achieve precise genetic modifications in large domestic animals for future biotechnological applications.
Resumo:
Rotaviruses are the major cause of severe diarrhea in infants and young children worldwide. Due to their restricted site of replication, i.e., mature enterocytes, local intestinal antibodies have been proposed to play a major role in protective immunity. Whether secretory immunoglobulin A (IgA) antibodies alone can provide protection against rotavirus diarrhea has not been fully established. To address this question, a library of IgA monoclonal antibodies (MAbs) previously developed against different proteins of rhesus rotavirus was used. A murine hybridoma "backpack tumor" model was established to examine if a single MAb secreted onto mucosal surfaces via the normal epithelial transport pathway was capable of protecting mice against diarrhea upon oral challenge with rotavirus. Of several IgA and IgG MAbs directed against VP8 and VP6 of rotavirus, only IgA VP8 MAbs (four of four) were found to protect newborn mice from diarrhea. An IgG MAb recognizing the same epitope as one of the IgA MAbs tested failed to protect mice from diarrhea. We also investigated if antibodies could be transcytosed in a biologically active form from the basolateral domain to the apical domain through filter-grown Madin-Darby canine kidney (MDCK) cells expressing the polymeric immunoglobulin receptor. Only IgA antibodies with VP8 specificity (four of four) neutralized apically administered virus. The results support the hypothesis that secretory IgA antibodies play a major role in preventing rotavirus diarrhea. Furthermore, the results show that the in vivo and in vitro methods described are useful tools for exploring the mechanisms of viral mucosal immunity.
Resumo:
Rotavirus is the major cause of diarrhea among young infants in both humans and animals. Immune protection of newborns by vaccination is difficult to achieve since there is not enough time to mount an immune response before exposure to the virus. We have designed a vaccination strategy mediating transfer of neutralizing antibodies from the mother to the offspring during pregnancy and/or lactation. Adult female mice were nasally immunized with virus-like particles (VLPs) made of viral proteins VP2 and 6 (VLP2/6) or VP 2, 6, and 7 (VLP2/6/7) derived from the RF rotavirus strain in the presence or absence of cholera toxin. Both vaccines elicited serum and milk antibodies against the respective VPs. Four days after parturition, suckling pups were challenged orally with RF rotavirus. Pups from mothers immunized with VLP2/6/7 but not VLP2/6 were protected against rotavirus diarrhea, indicating that VP7 plays a key role in protection. Protection was mediated by milk rather than serum antibodies, and mucosal adjuvants were not required. In conclusion, VLPs containing VP7 administered nasally to mothers represent a promising vaccine candidate for the protection of suckling newborns against rotavirus-induced diarrhea, even in the absence of a mucosal adjuvant.
Resumo:
Bovine leukaemia virus (BLV) is the causative agent of enzootic bovine leukosis (EBL). In Argentina, where a program to eradicate EBL has been introduced, sensitive and reliable diagnosis has attained high priority. Although the importance of the agar gel immunodiffusion test remains unchanged for routine work, an additional diagnostic technique is necessary to confirm cases of sera with equivocal results or of calves carrying maternal antibodies.Utilizing a nested shuttle polymerase chain reaction, the proviral DNA was detected from cows experimentally infected with as little as 5 ml of whole blood from BLV seropositive cows that were nonetheless normal in haematological terms. It proved to be a very sensitive technique, since it rapidly revealed the presence of the provirus, frequently at 2 weeks postinoculation and using a two-round procedure of nested PCR taking only 3 hours. Additionally, the primers used flanked a portion of the viral genome often employed to differentiate BLV type applying BamHI digestion. It is concluded that this method might offer a highly promising diagnostic tool for BLV infection.