944 resultados para boundary heat flux


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sixteen monthly air–sea heat flux products from global ocean/coupled reanalyses are compared over 1993–2009 as part of the Ocean Reanalysis Intercomparison Project (ORA-IP). Objectives include assessing the global heat closure, the consistency of temporal variability, comparison with other flux products, and documenting errors against in situ flux measurements at a number of OceanSITES moorings. The ensemble of 16 ORA-IP flux estimates has a global positive bias over 1993–2009 of 4.2 ± 1.1 W m−2. Residual heat gain (i.e., surface flux + assimilation increments) is reduced to a small positive imbalance (typically, +1–2 W m−2). This compensation between surface fluxes and assimilation increments is concentrated in the upper 100 m. Implied steady meridional heat transports also improve by including assimilation sources, except near the equator. The ensemble spread in surface heat fluxes is dominated by turbulent fluxes (>40 W m−2 over the western boundary currents). The mean seasonal cycle is highly consistent, with variability between products mostly <10 W m−2. The interannual variability has consistent signal-to-noise ratio (~2) throughout the equatorial Pacific, reflecting ENSO variability. Comparisons at tropical buoy sites (10°S–15°N) over 2007–2009 showed too little ocean heat gain (i.e., flux into the ocean) in ORA-IP (up to 1/3 smaller than buoy measurements) primarily due to latent heat flux errors in ORA-IP. Comparisons with the Stratus buoy (20°S, 85°W) over a longer period, 2001–2009, also show the ORA-IP ensemble has 16 W m−2 smaller net heat gain, nearly all of which is due to too much latent cooling caused by differences in surface winds imposed in ORA-IP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study uses large-eddy simulation to investigate the structure of the ocean surface boundary layer (OSBL) in the presence of Langmuir turbulence and stabilizing surface heat fluxes. The OSBL consists of a weakly stratified layer, despite a surface heat flux, above a stratified thermocline. The weakly stratified (mixed) layer is maintained by a combination of a turbulent heat flux produced by the wave-driven Stokes drift and downgradient turbulent diffusion. The scaling of turbulence statistics, such as dissipation and vertical velocity variance, is only affected by the surface heat flux through changes in the mixed layer depth. Diagnostic models are proposed for the equilibrium boundary layer and mixed layer depths in the presence of surface heating. The models are a function of the initial mixed layer depth before heating is imposed and the Langmuir stability length. In the presence of radiative heating, the models are extended to account for the depth profile of the heating.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As the climate warms, heat waves (HW) are projected to be more intense and to last longer, with serious implications for public health. Urban residents face higher health risks because urban heat islands (UHIs) exacerbate HW conditions. One strategy to mitigate negative impacts of urban thermal stress is the installation of green roofs (GRs) given their evaporative cooling effect. However, the effectiveness of GRs and the mechanisms by which they have an effect at the scale of entire cities are still largely unknown. The Greater Beijing Region (GBR) is modeled for a HW scenario with the Weather Research and Forecasting (WRF) model coupled with a state-of-the-art urban canopy model (PUCM) to examine the effectiveness of GRs. The results suggest GR would decrease near-surface air temperature (ΔT2max = 2.5 K) and wind speed (ΔUV10max = 1.0 m s-1) but increase atmospheric humidity (ΔQ2max = 1.3 g kg-1). GRs are simulated to lessen the overall thermal stress as indicated by apparent temperature (ΔAT2max = 1.7 °C). The modifications by GRs scale almost linearly with the fraction of the surface they cover. Investigation of the surface-atmosphere interactions indicate that GRs with plentiful soil moisture dissipate more of the surface energy as latent heat flux and subsequently inhibit the development of the daytime planetary boundary layer (PBL). This causes the atmospheric heating through entrainment at the PBL top to be decreased. Additionally, urban GRs modify regional circulation regimes leading to decreased advective heating under HW.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we investigate the cold front passage effects on sensible and latent heat flux in a tropical hydroelectric reservoir. The study area, Itumbiara reservoir (Goiás State/Brazil) at the beginning of the austral winter, is characterized by the presence of a weak thermal stratification and the passage of several cold fronts from higher latitudes of South America. Sensible and latent heat fluxes were estimated considering the atmospheric boundary layer stability. In situ and MODIS water surface temperature data were used to adjust the coefficients for momentum and heat exchanges between water and atmosphere and spatialize the sensible and latent heat fluxes. The results showed that during a cold front event the sensible heat flux can be up to five times greater than the flux observed before. The latent heat flux tends to decrease during the cold front but increase again after the passage. The highest values of heat loss were observed at littoral zone and some Reservoir's embayment. The heat loss intensification can be separated in two moments: first, during the cold front passage, when the wind speed increases and the air temperature decreases; second, after the cold front passage, with air humidity decreasing. This can be considered a key process to understanding the heat loss in the Itumbiara reservoir. © 2013 COSPAR. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we examine the effect of contact angle (or surface wettability) on the convective heat transfer coefficient in microchannels. Slip flow, where the fluid velocity at the wall is non-zero, is most likely to occur in microchannels due to its dependence on shear rate or wall shear stress. We show analytically that for a constant pressure drop, the presence of slip increases the Nusselt number. In a microchannel heat exchanger we modified the surface wettability from a contact angle of 20 degrees-120 degrees using thin film coating technology. Apparent slip flow is implied from pressure and flow rate measurements with a departure from classical laminar friction coefficients above a critical shear rate of approximately 10,000 s(-1). The magnitude of this departure is dependant on the contact angle with higher contact angles surfaces exhibiting larger pressure drop decreases. Similarly, the non-dimensional heat flux is found to decrease relative to laminar non-slip theory, and this decrease is also a function of the contact angle. Depending on the contact angle and the wall shear rate, variations in the heat transfer rate exceeding 10% can be expected. Thus the contact angle is an important consideration in the design of micro, and even more so, nano heat exchangers. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we investigate the problem of reconstruction of a stationary temperature field from given temperature and heat flux on a part of the boundary of a semi-infinite region containing an inclusion. This situation can be modelled as a Cauchy problem for the Laplace operator and it is an ill-posed problem in the sense of Hadamard. We propose and investigate a Landweber-Fridman type iterative method, which preserve the (stationary) heat operator, for the stable reconstruction of the temperature field on the boundary of the inclusion. In each iteration step, mixed boundary value problems for the Laplace operator are solved in the semi-infinite region. Well-posedness of these problems is investigated and convergence of the procedures is discussed. For the numerical implementation of these mixed problems an efficient boundary integral method is proposed which is based on the indirect variant of the boundary integral approach. Using this approach the mixed problems are reduced to integral equations over the (bounded) boundary of the inclusion. Numerical examples are included showing that stable and accurate reconstructions of the temperature field on the boundary of the inclusion can be obtained also in the case of noisy data. These results are compared with those obtained with the alternating iterative method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different types of base fluids, such as water, engine oil, kerosene, ethanol, methanol, ethylene glycol etc. are usually used to increase the heat transfer performance in many engineering applications. But these conventional heat transfer fluids have often several limitations. One of those major limitations is that the thermal conductivity of each of these base fluids is very low and this results a lower heat transfer rate in thermal engineering systems. Such limitation also affects the performance of different equipments used in different heat transfer process industries. To overcome such an important drawback, researchers over the years have considered a new generation heat transfer fluid, simply known as nanofluid with higher thermal conductivity. This new generation heat transfer fluid is a mixture of nanometre-size particles and different base fluids. Different researchers suggest that adding spherical or cylindrical shape of uniform/non-uniform nanoparticles into a base fluid can remarkably increase the thermal conductivity of nanofluid. Such augmentation of thermal conductivity could play a more significant role in enhancing the heat transfer rate than that of the base fluid. Nanoparticles diameters used in nanofluid are usually considered to be less than or equal to 100 nm and the nanoparticles concentration usually varies from 5% to 10%. Different researchers mentioned that the smaller nanoparticles concentration with size diameter of 100 nm could enhance the heat transfer rate more significantly compared to that of base fluids. But it is not obvious what effect it will have on the heat transfer performance when nanofluids contain small size nanoparticles of less than 100 nm with different concentrations. Besides, the effect of static and moving nanoparticles on the heat transfer of nanofluid is not known too. The idea of moving nanoparticles brings the effect of Brownian motion of nanoparticles on the heat transfer. The aim of this work is, therefore, to investigate the heat transfer performance of nanofluid using a combination of smaller size of nanoparticles with different concentrations considering the Brownian motion of nanoparticles. A horizontal pipe has been considered as a physical system within which the above mentioned nanofluid performances are investigated under transition to turbulent flow conditions. Three different types of numerical models, such as single phase model, Eulerian-Eulerian multi-phase mixture model and Eulerian-Lagrangian discrete phase model have been used while investigating the performance of nanofluids. The most commonly used model is single phase model which is based on the assumption that nanofluids behave like a conventional fluid. The other two models are used when the interaction between solid and fluid particles is considered. However, two different phases, such as fluid and solid phases is also considered in the Eulerian-Eulerian multi-phase mixture model. Thus, these phases create a fluid-solid mixture. But, two phases in the Eulerian-Lagrangian discrete phase model are independent. One of them is a solid phase and the other one is a fluid phase. In addition, RANS (Reynolds Average Navier Stokes) based Standard κ-ω and SST κ-ω transitional models have been used for the simulation of transitional flow. While the RANS based Standard κ-ϵ, Realizable κ-ϵ and RNG κ-ϵ turbulent models are used for the simulation of turbulent flow. Hydrodynamic as well as temperature behaviour of transition to turbulent flows of nanofluids through the horizontal pipe is studied under a uniform heat flux boundary condition applied to the wall with temperature dependent thermo-physical properties for both water and nanofluids. Numerical results characterising the performances of velocity and temperature fields are presented in terms of velocity and temperature contours, turbulent kinetic energy contours, surface temperature, local and average Nusselt numbers, Darcy friction factor, thermal performance factor and total entropy generation. New correlations are also proposed for the calculation of average Nusselt number for both the single and multi-phase models. Result reveals that the combination of small size of nanoparticles and higher nanoparticles concentrations with the Brownian motion of nanoparticles shows higher heat transfer enhancement and thermal performance factor than those of water. Literature suggests that the use of nanofluids flow in an inclined pipe at transition to turbulent regimes has been ignored despite its significance in real-life applications. Therefore, a particular investigation has been carried out in this thesis with a view to understand the heat transfer behaviour and performance of an inclined pipe under transition flow condition. It is found that the heat transfer rate decreases with the increase of a pipe inclination angle. Also, a higher heat transfer rate is found for a horizontal pipe under forced convection than that of an inclined pipe under mixed convection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents measurements of wall heat flux and flow structure in a canonical film cooling configuration with Mach 2.3 core flow in which the coolant is injected parallel to the wall through a two-dimensional louver. Four operating conditions are investigated: no film (i.e. flow over a rearward-facing step), subsonic film, pressure-matched film, and supersonic film. The overall objective is to provide a set of experimental data with well characterized boundary conditions that can be used for code validation. The results are compared to RANS and LES simulations which overpredict heat transfer in the subsonic film cases and underpredict heat transfer in supersonic cases after film breakdown. The thesis also describes a number of improvements that were made to the experimental facility including new Schlieren optics, a better film heater, more data at more locations, and a verification of the heat flux measurement hardware and data reduction methods.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The problem of MHD natural convection boundary layer flow of an electrically conducting and optically dense gray viscous fluid along a heated vertical plate is analyzed in the presence of strong cross magnetic field with radiative heat transfer. In the analysis radiative heat flux is considered by adopting optically thick radiation limit. Attempt is made to obtain the solutions valid for liquid metals by taking Pr≪1. Boundary layer equations are transformed in to a convenient dimensionless form by using stream function formulation (SFF) and primitive variable formulation (PVF). Non-similar equations obtained from SFF are then simulated by implicit finite difference (Keller-box) method whereas parabolic partial differential equations obtained from PVF are integrated numerically by hiring direct finite difference method over the entire range of local Hartmann parameter, $xi$ . Further, asymptotic solutions are also obtained for large and small values of local Hartmann parameter $xi$ . A favorable agreement is found between the results for small, large and all values of $xi$ . Numerical results are also demonstrated graphically by showing the effect of various physical parameters on shear stress, rate of heat transfer, velocity and temperature.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study, natural convection boundary layer flow of thermally radiating fluid along a heated vertical wavy surface is analyzed. Here, the radiative component of heat flux emulates the surface temperature. Governing equations are reduced to dimensionless form, subject to the appropriate transformation. Resulting dimensionless equations are transformed to a set of parabolic partial differential equations by using primitive variable formulation, which are then integrated numerically via iterative finite difference scheme. Emphasis has been given to low Prandtl number fluid. The numerical results obtained for the physical parameters, such as, surface radiation parameter, R, and radiative length parameter, ξ, are discussed in terms of local skin friction and Nusselt number coefficients. Comprehensive interpretation of velocity distribution is also given in the form of streamlines.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Three dimensional conjugate heat transfer simulation of a standard parabolic trough thermal collector receiver is performed numerically in order to visualize and analyze the surface thermal characteristics. The computational model is developed in Ansys Fluent environment based on some simplified assumptions. Three test conditions are selected from the existing literature to verify the numerical model directly, and reasonably good agreement between the model and the test results confirms the reliability of the simulation. Solar radiation flux profile around the tube is also approximated from the literature. An in house macro is written to read the input solar flux as a heat flux wall boundary condition for the tube wall. The numerical results show that there is an abrupt variation in the resultant heat flux along the circumference of the receiver. Consequently, the temperature varies throughout the tube surface. The lower half of the horizontal receiver enjoys the maximum solar flux, and therefore, experiences the maximum temperature rise compared to the upper part with almost leveled temperature. Reasonable attributions and suggestions are made on this particular type of conjugate thermal system. The knowledge that gained so far from this study will be used to further the analysis and to design an efficient concentrator photovoltaic collector in near future.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present results of computational simulations of tungsten-inert-gas and metal-inert-gas welding. The arc plasma and the electrodes (including the molten weld pool when necessary) are included self-consistently in the computational domain. It is shown, using three examples, that it would be impossible to accurately estimate the boundary conditions on the weld-pool surface without including the arc plasma in the computational domain. First, we show that the shielding gas composition strongly affects the properties of the arc that influence the weld pool: heat flux density, current density, shear stress and arc pressure at the weld-pool surface. Demixing is found to be important in some cases. Second, the vaporization of the weld-pool metal and the diffusion of the metal vapour into the arc plasma are found to decrease the heat flux density and current density to the weld pool. Finally, we show that the shape of the wire electrode in metal-inert-gas welding has a strong influence on flow velocities in the arc and the pressure and shear stress at the weld-pool surface. In each case, we present evidence that the geometry and depth of the weld pool depend strongly on the properties of the arc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This article presents the results on the diagnostics and numerical modeling of low-frequency (∼460 KHz) inductively coupled plasmas generated in a cylindrical metal chamber by an external flat spiral coil. Experimental data on the electron number densities and temperatures, electron energy distribution functions, and optical emission intensities of the abundant plasma species in low/intermediate pressure argon discharges are included. The spatial profiles of the plasma density, electron temperature, and excited argon species are computed, for different rf powers and working gas pressures, using the two-dimensional fluid approach. The model allows one to achieve a reasonable agreement between the computed and experimental data. The effect of the neutral gas temperature on the plasma parameters is also investigated. It is shown that neutral gas heating (at rf powers≥0.55kW) is one of the key factors that control the electron number density and temperature. The dependence of the average rf power loss, per electron-ion pair created, on the working gas pressure shows that the electron heat flux to the walls appears to be a critical factor in the total power loss in the discharge.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The role of melt convection oil the performance of beat sinks with Phase Change Material (PCM) is presented in this paper. The beat sink consists of aluminum plate fins embedded in PCM and heat flux is supplied from the bottom. The design of such a heat sink requires optimization with respect to its geometrical parameters. The objective of the optimization is to maximize the heat sink operation time for the prescribed heat flux and the critical chip temperature. The parameters considered for optimization are fin number and fill thickness. The height and base plate thickness of heat sink are kept constant in the present analysis. An enthalpy based CFD model is developed, which is capable Of Simulating phase change and associated melt convection. The CFD model is Coupled with Genetic Algorithm (GA) for carrying out the optimization. Two cases are considered, one without melt convection (conduction regime) and the other with convection. It is found that the geometrical optimizations of heat sinks are different for the two cases, indicating the importance of inch convection in the design of heat sinks with PCMs.