974 resultados para bone turnover
Resumo:
Thirty percent of 70-year-old women have osteoporosis; after age of 80 its prevalence is up to 70%. Postmenopausal women with osteoporosis seem to be at an increased risk for cardiovascular events, and deterioration of oral health, as shown by attachment loss of teeth, which is proportional to the severity of osteoporosis. Osteoporosis can be treated with many different medication, e.g. estrogen and alendronate. We randomized 90 elderly osteoporotic women (65-80 years of age) to receive hormone therapy (HT)(2mg E2+NETA), 10mg alendronate, and their combination for two years and compared their effects on bone mineral density (BMD) and turnover, two surrogate markers of the risk of cardiovascular diseases, C-reactive protein (CRP) and E-selectin, as well as oral health. The effect of HT on health-related quality of life (HRQoL) was studied in the population-based cohort of 1663 postmenopausal women (mean age 68 yr) (585 estrogen users and 1078 non-users). BMD was measured with dual-energy X-ray absorptiometry (DXA) at 0, 12 and 24 months. Urinary N-telopeptide (NTX) of type I collagen, a marker of bone resorption, and serum aminoterminal propeptide of human type I procollagen (PINP), a marker of bone formation, were measured every six months of treatment. Serum CRP and E-selectin, were measured at 0, 6, and 12 months. Dental, and periodontal conditions, and gingival crevicular fluid (GCF) matrix metalloproteinase (MMP)-8 levels were studied to evaluate the oral health status and for the mouth symptoms a structured questionnaire was used. The HRQoL was measured with 15D questionnaire. Lumbar spine BMD increased similarly in all treatment groups (6.8-8.4% and 9.1-11.2%). Only HT increased femoral neck BMD at both 12 (4.9%) and 24 months (5.8%), at the latter time point the HT group differed significantly from the other groups. HT reduced bone marker levels of NTX and PINP significantly less than other two groups.Oral HT significantly increased serum CRP level by 76.5% at 6 and by 47.1% (NS) at 12 months, and decreased serum E-selectin level by 24.3% and 30.0%. Alendronate had no effect on these surrogate markers. Alendronate caused a decrease in the resting salivary flow rate and tended to increase GCF MMP-8 levels. Otherwise, there was no effect on the parameters of oral health. HT improved the HRQoL of elderly women significantly on the dimensions of usual activities, vitality and sexual activity, but the overall improvement in HRQoL was neither statistically significant nor clinically important. In conclusion, bisphosphonates might be the first option to start the treatment of postmenopausal osteoporosis in the old age.
Resumo:
The osteocyte network is recognized as the major mechanical sensor in the bone remodeling process, and osteocyte-osteoblast communication acts as an important mediator in the coordination of bone formation and turnover. In this study, we developed a novel 3D trabecular bone explant co-culture model that allows live osteocytes situated in their native extracellular matrix environment to be interconnected with seeded osteoblasts on the bone surface. Using a low-level medium perfusion system, the viability of in situ osteocytes in bone explants was maintained for up to 4 weeks, and functional gap junction intercellular communication (GJIC) was successfully established between osteocytes and seeded primary osteoblasts. Using this novel co-culture model, the effects of dynamic deformational loading, GJIC, and prostaglandin E-2 (PGE(2)) release on functional bone adaptation were further investigated. The results showed that dynamical deformational loading can significantly increase the PGE(2) release by bone cells, bone formation, and the apparent elastic modulus of bone explants. However, the inhibition of gap junctions or the PGE(2) pathway dramatically attenuated the effects of mechanical loading. This 3D trabecular bone explant co-culture model has great potential to fill in the critical gap in knowledge regarding the role of osteocytes as a mechano-sensor and how osteocytes transmit signals to regulate osteoblasts function and skeletal integrity as reflected in its mechanical properties.
Resumo:
There is a growing socioeconomic recognition that clinical bone diseases such as bone infections, bone tumors and osteoporotic bone loss mainly associated with ageing, are major issues in today0s society. SPARC (secreted protein, acidic and rich in cysteine), a matricellular glycoprotein, may be a promising therapeutic target for preventing or treating bone‐related diseases. In fact, SPARC is associated with tissue remodeling, repair, development, cell turnover, bone mineralization and may also participate in growth and progression of tumors, namely cancer‐related bone metastasis. Yet, the function of SPARC in such biological processes is poorly understood and controversial. The main objective of this work is to review the current knowledge related to the activity of SPARC in bone remodeling, tumorigenesis, and bone metastasis. Progress in understanding SPARC biology may provide novel strategies for bone regeneration and the development of anti‐angiogenic, anti‐proliferative, or counter‐adhesive treatments specifically against bone metastasis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Zootecnia - FMVZ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Reported effects of cyclosporin A (Sandimmun, CsA) on bone have been both contradictory and controversial. Thus, stimulation of new bone formation as well as increased mineral and matrix resorption have been observed. To investigate the response of basal mineral and matrix turnover to CsA treatment at different stages of skeletal development, comparative experiments were conducted in young growing female rats and in adults. Fifty-six young animals (study A) and 40 adults (study B) received orally either the carrier substance or 5, 15, and 30 mg/kg CsA for 30 days. The following parameters were measured: (a) total skeletal mineral content by dual energy X-ray absorptiometry (DEXA) on days 1 and 30; (b) tibial trabecular volume at day 30; (c) serum osteocalcin at 5-day intervals; (d) urinary deoxypyridinoline (Dpd) excretion (days 1, 15, and 30); and (e) plasma levels of CsA. Results can be summarized as follows: in young rats (study A), total skeletal mineral was not modified by the 5- and 15-mg/kg doses of CsA, whereas 30 mg/kg induced a significant decrease (-15%, p < 0.01). This parameter was not significantly modified in adult animals (study B) subjected to the same doses. The administration of 5 mg/kg CsA did not alter tibial trabecular volume in young rats, but 15 and 30 mg/kg significantly lowered this parameter (-16.3%, p < 0.02, and -42%, p < 0.001, respectively). In adult rats, tibial trabecular volume remained unchanged with the exception of the group receiving 30 mg/kg which exhibited significantly lower values (-28%, p < 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Bone remodeling depends on the spatial and temporal coupling of bone formation by osteoblasts and bone resorption by osteoclasts; however, the molecular basis of these inductive interactions is unknown. We have previously shown that osteoblastic overexpression of TGF-β2 in transgenic mice deregulates bone remodeling and leads to an age-dependent loss of bone mass that resembles high-turnover osteoporosis in humans. This phenotype implicates TGF-β2 as a physiological regulator of bone remodeling and raises the question of how this single secreted factor regulates the functions of osteoblasts and osteoclasts and coordinates their opposing activities in vivo. To gain insight into the physiological role of TGF-β in bone remodeling, we have now characterized the responses of osteoblasts to TGF-β in these transgenic mice. We took advantage of the ability of alendronate to specifically inhibit bone resorption, the lack of osteoclast activity in c-fos−/− mice, and a new transgenic mouse line that expresses a dominant-negative form of the type II TGF-β receptor in osteoblasts. Our results show that TGF-β directly increases the steady-state rate of osteoblastic differentiation from osteoprogenitor cell to terminally differentiated osteocyte and thereby increases the final density of osteocytes embedded within bone matrix. Mice overexpressing TGF-β2 also have increased rates of bone matrix formation; however, this activity does not result from a direct effect of TGF-β on osteoblasts, but is more likely a homeostatic response to the increase in bone resorption caused by TGF-β. Lastly, we find that osteoclastic activity contributes to the TGF-β–induced increase in osteoblast differentiation at sites of bone resorption. These results suggest that TGF-β is a physiological regulator of osteoblast differentiation and acts as a central component of the coupling of bone formation to resorption during bone remodeling.
Resumo:
The use of allograft bone is increasingly common in orthopaedic reconstruction procedures. The optimal method of preparation of allograft bone is subject of great debate. Proponents of fresh-frozen graft cite improved biological and biomechanical characteristics relative to irradiated material, whereas fear of bacterial or viral transmission warrants some to favour irradiated graft. Careful review of the literature is necessary to appreciate the influence of processing techniques on bone quality. Whereas limited clinical trials are available to govern the selection of appropriate bone graft, this review presents the argument favouring the use of fresh-frozen bone allograft as compared to irradiated bone.
Resumo:
Adolescent Idiopathic Scoliosis (AIS) is the most common deformity of the spine, affecting 2-4% of the population. Previous studies have shown that the vertebrae in scoliotic spines undergo abnormal shape changes, however there has been little exploration of how AIS affects bone density distribution within the vertebrae. Existing pre-operative CT scans of 53 female idiopathic scoliosis patients with right-sided main thoracic curves were used to measure the lateral (right to left) bone density profile at mid-height through each vertebral body. This study demonstrated that AIS patients have a marked convex/concave asymmetry in bone density for vertebral levels at or near the apex of the scoliotic curve. To the best of our knowledge, the only previous studies of bone density distribution in AIS are those of Périé et al [1,2], who reported a coronal plane ‘mechanical migration’ of 0.54mm toward the concavity of the scoliotic curve in the lumbar apical vertebrae of 11 scoliosis patients. This is comparable to the value of 0.8mm (4%) in our study, especially since our patients had more severe scoliotic curves. From a bone adaptation perspective, these results suggest that the axial loading on the scoliotic spine is strongly asymmetric.
Resumo:
Bone graft is generally considered fundamental in achieving solid fusion in scoliosis correction and pseudarthrosis following instrumentation may predispose to implant failure. In endoscopic anterior-instrumented scoliosis surgery, autologous rib or iliac crest graft has been utilised traditionally but both techniques increase operative duration and cause donor site morbidity. Allograft bone and bone- morphogenetic-protein alternatives may improve fusion rates but this remains controversial. This study's objective was to compare two-year postoperative fusion rates in a series of patients who underwent endoscopic anterior instrumentation for thoracic scoliosis utilising various bone graft types. Significantly better rates of fusion occurred in endoscopic anterior instrumented scoliosis correction using femoral allograft compared to autologous rib-heads and iliac crest graft. This may be partly explained by the difficulty obtaining sufficient quantities of autologous graft. Lower fusion rates in the autologous graft group appeared to predispose to rod fracture although the clinical consequence of implant failure is uncertain.
Resumo:
Introduction : For the past decade, three dimensional (3D) culture has served as a foundation for regenerative medicine study. With an increasing awareness of the importance of cell-cell and cell-extracellular matrix interactions which are lacking in 2D culture system, 3D culture system has been employed for many other applications namely cancer research. Through development of various biomaterials and utilization of tissue engineering technology, many in vivo physiological responses are now better understood. The cellular and molecular communication of cancer cells and their microenvironment, for instance can be studied in vitro in 3D culture system without relying on animal models alone. Predilection of prostate cancer (CaP) to bone remains obscure due to the complexity of the mechanisms and lack of proper model for the studies. In this study, we aim to investigate the interaction between CaP cells and osteoblasts simulating the natural bone metastasis. We also further investigate the invasiveness of CaP cells and response of androgen sensitve CaP cells, LNCaP to synthetic androgen.----- Method : Human osteoblast (hOB) scaffolds were prepared by seeding hOB on medical grade polycaprolactone-tricalcium phosphate (mPLC-TCP) scaffolds and induced to produce bone matrix. CaP cell lines namely wild type PC3 (PC3-N), overexpressed prostate specific antigen PC3 (PC3k3s5) and LNCaP were seeded on hOB scaffolds as co-cultures. Morphology of cells was examined by Phalloidin-DAPI and SEM imaging. Gelatin zymography was performed on the 48 hours conditioned media (CM) from co-cultures to determine matrix metalloproteinase (MMP) activity. Gene expression of hOB/LNCaP co-cultures which were treated for 48 hours with 1nM synthetic androgen R1881 were analysed by quantitative real time PCR (qRT-PCR).----- Results : Co-culture of PCC/hOB revealed that the morphology of PCCs on the tissue engineered bone matrix varied from homogenous to heterogenous clusters. Enzymatically inactive pro-MMP2 was detected in CM from hOBs and PCCs cultured on scaffolds. Elevation in MMP9 activity was found only in hOB/PC3N co-culture. hOB/LNCaP co-culture showed increase in expression of key enzymes associated with steroid production which also corresponded to an increase in prostate specific antigen (PSA) and MMP9.----- Conclusions : Upregulation of MMP9 indicates involvement of ECM degradation during cancer invasion and bone metastases. Expression of enzymes involved in CaP progression, PSA, which is not expressed in osteoblasts, demonstrates that crosstalk between PCCs and osteoblasts may play a part in the aggressiveness of CaP. The presence of steroidogenic enzymes, particularly, RDH5, in osteoblasts and stimulated expression in co-culture, may indicate osteoblast production of potent androgens, fuelling cancer cell proliferation. Based on these results, this practical 3D culture system may provide greater understanding into CaP mediated bone metastasis. This allows the role of the CaP/hOB interaction with regards to invasive property and steroidogenesis to be further explored.