942 resultados para blood-aqueous barrier


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Silk fibroin provides a promising biomaterial for ocular tissue reconstruction including the damaged outer blood-retinal barrier of patients afflicted with age-related macular degeneration (AMD). The aim of the present study was to evaluate the function of retinal pigment epithelial (RPE) cells in vitro, when grown on fibroin membranes manufactured to a similar thickness as Bruch’s membrane (3 μm). Confluent cultures of RPE cells (ARPE-19) were established on fibroin membranes and maintained under conditions designed to promote maturation over 4 months. Control cultures were grown on polyester cell culture well inserts (Transwell). Cultures established on either material developed a cobblestoned morphology with partial pigmentation within 12 weeks. Immunocytochemistry at 16 weeks revealed a similar distribution pattern between cultures for F-actin, ZO-1, ezrin, cytokeratin pair 8/18, RPE-65 and Na+/K+-ATPase. Electron microscopy revealed that cultures grown on fibroin displayed a rounder apical surface with a more dense distribution of microvilli. Both cultures avidly ingested fluorescent microspheres coated with vitronectin and bovine serum albumin (BSA), but not controls coated with BSA alone. VEGF and PEDF were detected in the conditioned medium collected from above and below both membrane types. Levels of PEDF were significantly higher than for VEGF on both membranes and a trend was observed towards larger amounts of PEDF in apical compartments. These findings demonstrate that RPE cell functions on fibroin membranes are equivalent to those observed for standard test materials (polyester membranes). As such, these studies support advancement to studies of RPE cell implantation on fibroin membranes in a preclinical model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The brain is well protected against microbial invasion by cellular barriers, such as the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB). In addition, cells within the central nervous system (CNS) are capable of producing an immune response against invading pathogens. Nonetheless, a range of pathogenic microbes make their way to the CNS, and the resulting infections can cause significant morbidity and mortality. Bacteria, amoebae, fungi, and viruses are capable of CNS invasion, with the latter using axonal transport as a common route of infection. In this review, we compare the mechanisms by which bacterial pathogens reach the CNS and infect the brain. In particular, we focus on recent data regarding mechanisms of bacterial translocation from the nasal mucosa to the brain, which represents a little explored pathway of bacterial invasion but has been proposed as being particularly important in explaining how infection with Burkholderia pseudomallei can result in melioidosis encephalomyelitis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report here that a protein species with biochemical and immunological similarity with chicken egg riboflavin carrier protein (RCP) is synthesized and secreted by immature rat Sertoli cells in culture. When quantitated by a specific heterologous radioimmunoassay, optimal concentrations of FSH (25 ng/ml) brought about 3-fold stimulation of RCP secretion. FSH, in the presence of testosterone (10−6 M) brought about 6-fold stimulation of secretion of RCP over the control cultures which were maintained in the absence of these two factors. The aromatase inhibitor (1,4,6-androstatrien-3,17-dione) curtailed 85% of the enhanced secretion of RCP, suggesting that the hormonal stimulation is mediated through in situ synthesized estrogen and this could be confirmed with exogenous estradiol-17 β which brought about 3 — fold enhancement of secretion of RCP at a concentration of 10−6 M. When tamoxifen (10 μM) was added along with FSH and testosterone, there was 75% decrease in the enhanced secretion of RCP. Addition of this anti-estrogen together with exogenous estradiol resulted in 55% decrease in elevated levels of RCP. Cholera toxin (1 μg/ml) and 8-bromo-cyclic AMP (0.5 mM) mimicked the action of FSH on the secretion of RCP thus suggesting that FSH stimulation of RCP production may be mediated through cyclic AMP. These findings suggest that estrogen mediates RCP induction in hormonally stimulated sertoli cells presumably to function as the carrier of riboflavin to the developing germ cells through blood-testis barrier in rodents.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stroke, ischemic or hemorrhagic, belongs among the foremost causes of death and disability worldwide. Massive brain swelling is the leading cause of death in large hemispheric strokes and is only modestly alleviated by available treatment. Thrombolysis with tissue plasminogen activator (TPA) is the only approved therapy in acute ischemic stroke, but fear of TPA-mediated hemorrhage is often a reason for withholding this otherwise beneficial treatment. In addition, recanalization of the occluded artery (spontaneously or with thrombolysis) may cause reperfusion injury by promoting brain edema, hemorrhage, and inflammatory cell infiltration. A dominant event underlying these phenomena seems to be disruption of the blood-brain barrier (BBB). In contrast to ischemic stroke, no widely approved clinical therapy exists for intracerebral hemorrhage (ICH), which is associated with poor outcome mainly due to the mass effect of enlarging hematoma and associated brain swelling. Mast cells (MCs) are perivascularly located resident inflammatory cells which contain potent vasoactive, proteolytic, and fibrinolytic substances in their cytoplasmic granules. Experiments from our laboratory showed MC density and their state of granulation to be altered early following focal transient cerebral ischemia, and degranulating MCs were associated with perivascular edema and hemorrhage. (I) Pharmacological MC stabilization led to significantly reduced ischemic brain swelling (40%) and BBB leakage (50%), whereas pharmacological MC degranulation raised these by 90% and 50%, respectively. Pharmacological MC stabilization also revealed a 40% reduction in neutrophil infiltration. Moreover, genetic MC deficiency was associated with an almost 60% reduction in brain swelling, 50% reduction in BBB leakage, and 50% less neutrophil infiltration, compared with controls. (II) TPA induced MC degranulation in vitro. In vivo experiments with post-ischemic TPA administration demonstrated 70- to 100-fold increases in hemorrhage formation (HF) compared with controls HF. HF was significantly reduced by pharmacological MC stabilization at 3 (95%), 6 (75%), and 24 hours (95%) of follow-up. Genetic MC deficiency again supported the role of MCs, leading to 90% reduction in HF at 6 and 24 hours. Pharmacological MC stabilization and genetic MC deficiency were also associated with significant reduction in brain swelling and in neutrophil infiltration. Importantly, these effects translated into a significantly better neurological outcome and lower mortality after 24 hours. (III) Finally, in ICH experiments, pharmacological MC stabilization resulted in significantly less brain swelling, diminished growth in hematoma volume, better neurological scores, and decreased mortality. Pharmacological MC degranulation produced the opposite effects. Genetic MC deficiency revealed a beneficial effect similar to that found with pharmacological MC stabilization. In sum, the role of MCs in these clinically relevant scenarios is supported by a series of experiments performed both in vitro and in vivo. That not only genetic MC deficiency but also drugs targeting MCs could modulate these parameters (translated into better outcome and decreased mortality), suggests a potential therapeutic approach in a number of highly prevalent cerebral insults in which extensive tissue injury is followed by dangerous brain swelling and inflammatory cell infiltration. Furthermore, these experiments could hint at a novel therapy to improve the safety of thrombolytics, and a potential cellular target for those seeking novel forms of treatment for ICH.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nisäkkäillä keskushermoston uudistuminen on rajallista. Keskushermostovamman jälkeen aktivoituu monien paranemista edistävien tekijöiden lisäksi myös estäviä tekijöitä. Monella molekyylillä, kuten laminiinilla, on keskushermoston paranemista tehostava vaikutus. Laminiinit ovat myös kehon tyvikalvojen oleellisia rakennuskomponentteja. Keskushermoston laminiinit ovat tärkeitä sikiökehityksen aikana, esimerkiksi hermosäikeiden ohjauksessa. Myöhemmin ne osallistuvat veriaivoesteen ylläpitoon sekä vammojen jälkeiseen kudosreaktioon. Väitöskirjatutkimuksessani olen selvittänyt lamiiniinien, erityisesti γ1 laminiinin ja sen KDI peptidin, ekspressiota keskushermoston vammatilanteissa. Kokeellisessa soluviljelmäasetelmassa, joka simuloi vammautunutta keskushermostoympäristöä, osoitimme että KDI peptidi voimistaa sekä hermosolujen selviytymistä että hermosäikeiden kasvua. Kainihappo on glutamaattianalogi, ja glutamaattitoksisuudella uskotaan olevan tärkeä merkitys keskushermoston eri vamma- ja sairaustilanteissa tapahtuvassa hermosolukuolemassa. Toisessa väitöskirjani osatyössä osoitimme eläinmallissa KDI peptidin suojaavan rotan aivojen hippokampuksen hermosoluja kainihapon aiheuttamalta solutuholta. Elektrofysiologisilla mittauksilla osoitimme kolmannessa osatyössäni, että KDI peptidi estää glutamaattireseptorivirtoja ja suojaa siten glutamaattitoksisuudelta. Aivoveritulpan aiheuttama aivovaurio on yleinen syy aivohalvaukseen. Viimeisessä osatyössäni tutkimme eläinmallissa laminiinien ekspressiota iskemian vaurioittamassa aivokudoksessa. Laminiiniekspression todettiin voimistuvan vaurion jälkeen sekä tyvikalvo- että soluväliainerakenteissa. Vaurion ympärillä havaittiin astrosyyttejä, jotka jo melko aikaisessa vaiheessa vamman jälkeen ekspressoivat γ1 laminiinia ja KDI peptidiä. Tästä voidaan päätellä laminiinien osallistuvan aivoiskeemisen vaurion patofysiologiaan. Yleisesti väitöskirjatyöni kartoitti laminiinien ekspressiota sekä terveessä että vammautuneessa keskushermostossa. Väitöskirjatyöni tukee hypoteesia, jonka mukaan KDI peptidi suojaa keskushermostoa vaurioilta.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Veri-aivoeste suojelee aivoja verenkierron vierasaineilta. Veri-aivoestettä tutkivia in vivo ja in vitro -menetelmiä on raportoitu laajasti kirjallisuudessa. Yhdisteiden farmakokinetiikka aivoissa kuvaavia tietokonemalleja on esitetty vain muutamia. Tässä tutkimuksessa kerättiin kirjallisuudesta aineisto eri in vitro ja in vivo -menetelmillä määritetyistä veri-aivoesteen permeabiliteettikertoimista. Lisäksi tutkimuksessa rakennettiin kaksi veri-aivoesteen farmakokineettista tietokonemallia, mikrodialyysimalli ja efluksimalli. Mikrodialyysimalli on yksinkertainen kahdesta tilasta (verenkierto ja aivot) koostuva farmakokineettinen malli. Mikrodialyysimallilla simuloitiin in vivo määritettyjen parametrien perusteella viiden yhdisteen pitoisuuksia rotan aivoissa ja verenkierrossa. Mallilla ei saatu täsmällisesti in vivo -tilannetta vastaavia pitoisuuskuvaajia johtuen mallin rakenteessa tehdyistä yksinkertaistuksista, kuten aivokudostilan ja kuljetinproteiinien kinetiikan puuttuminen. Efluksimallissa on kolme tilaa, verenkierto, veri-aivoesteen endoteelisolutila ja aivot. Efluksimallilla tutkittiin teoreettisten simulaatioiden avulla veri-aivoesteen luminaalisella membraanilla sijaitsevan aktiivisen efluksiproteiinin ja passiivisen permeaation merkitystä yhdisteen pitoisuuksiin aivojen solunulkoisessa nesteessä. Tutkittava parametri oli vapaan yhdisteen pitoisuuksien suhde aivojen ja verenkierron välillä vakaassa tilassa (Kp,uu). Tuloksissa havaittiin efluksiproteiinin vaikutus pitoisuuksiin Michaelis-Mentenin kinetiikan mukaisesti. Efluksimalli sopii hyvin teoreettisten simulaatioiden tekemiseen. Malliin voidaan lisätä aktiivisia kuljettimia. Teoreettisten simulaatioiden avulla voidaan yhdistää in vitro ja in vivo tutkimuksien tuloksia ja osatekijöitä voidaan tutkia yhdessä simulaatiossa.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gliomas are the most frequent primary brain tumours. The cardinal features of gliomas are infiltrative growth pattern and progression from low-grade tumours to a more malignant phenotype. These features of gliomas generally prevent their complete surgical excision and cause their inherent tendency to recur after initial treatment and lead to poor long-term prognosis. Increasing knowledge about the molecular biology of gliomas has produced new markers that supplement histopathological diagnostics. Molecular markers are also used to evaluate the prognosis and predict therapeutic response. The purpose of this thesis is to study molecular events involved in the malignant progression of gliomas. Gliomas are highly vascularised tumours. Contrast enhancement in magnetic resonance imaging (MRI) reflects a disrupted blood-brain barrier and is often seen in malignant gliomas. In this thesis, 62 astrocytomas, oligodendrogliomas and oligoastrocytomas were studied by MRI and immunohistochemistry. Contrast enhancement in preoperative MRI was associated with angiogenesis, tumour cell proliferation and histological grade of gliomas. Activation of oncogenes by gene amplification is a common genetic aberration in gliomas. EGFR amplification on chromosome 7p12 occurs in 30-40% of glioblastomas. PDGFRA, KIT and VEGFR2 are receptor tyrosine kinase genes located on chromosome 4q12. Amplification of these genes was studied using in situ hybridisation in the primary and recurrent astrocytomas, oligodendrogliomas and oligoastrocytomas of 87 patients. PDGFRA, KIT or VEGFR2 amplification was found in 22% of primary tumours and 36% of recurrent tumours including low-grade and malignant gliomas. The most frequent aberration was KIT amplification, which occurred in 10% of primary tumours and in 27% of recurrent tumours. The expression of ezrin, cyclooxygenase 2 (COX-2) and HuR was studied immunohistochemically in a series of primary and recurrent gliomas of 113 patients. Ezrin is a cell membrane-cytoskeleton linking-protein involved in the migration of glioma cells. The COX-2 enzyme is implicated in the carcinogenesis of epithelial neoplasms and is overexpressed in gliomas. HuR is an RNA-stabilising protein, which regulates the expression of several proteins including COX-2. Ezrin, COX-2 and HuR were associated with histological grade and the overall survival of glioma patients. However, in multivariate analysis they were not independent prognostic factors. In conclusion, these results suggest that contrast enhancement in MRI can be used as a surrogate marker for the proliferative and angiogenic potential of gliomas. Aberrations of PDGFRA, KIT and VEGFR2 genes, as well as the dysregulated expression of ezrin, COX-2 and HuR proteins, are linked to the progression of gliomas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Malaria afflicts around 200 million people annually, with a mortality number close to 600,000. The mortality rate in Human Cerebral Malaria (HCM) is unacceptably high (15-20%), despite the availability of artemisinin-based therapy. An effective adjunct therapy is urgently needed. Experimental Cerebral Malaria (ECM) in mice manifests many of the neurological features of HCM. Migration of T cells and parasite-infected RBCs (pRBCs) into the brain are both necessary to precipitate the disease. We have been able to simultaneously target both these parameters of ECM. Curcumin alone was able to reverse all the parameters investigated in this study that govern inflammatory responses, CD8(+) T cell and pRBC sequestration into the brain and blood brain barrier (BBB) breakdown. But the animals eventually died of anemia due to parasite build-up in blood. However, arteether-curcumin (AC) combination therapy even after the onset of symptoms provided complete cure. AC treatment is a promising therapeutic option for HCM.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Microglia are largely known as the major orchestrators of the brain inflammatory response. As such, they have been traditionally studied in various contexts of disease, where their activation has been assumed to induce a wide range of detrimental effects. In the last few years, a series of discoveries have challenged the current view of microglia, showing their active and positive contribution to normal brain function. This Research Topic will review the novel physiological roles of microglia in the developing, mature and aging brain, under non-pathological conditions. In particular, this Research Topic will discuss the cellular and molecular mechanisms by which microglia contribute to the formation, pruning and plasticity of synapses; the maintenance of the blood brain barrier; the regulation of adult neurogenesis and hippocampal learning; and neuronal survival, among other important roles. Because these novel findings defy our understanding of microglial function in health as much as in disease, this Research Topic will also summarize the current view of microglial nomenclature, phenotypes, origin and differentiation, sex differences, and contribution to various brain pathologies. Additionally, novel imaging approaches and molecular tools to study microglia in their non-activated state will be discussed. In conclusion, this Research Topic seeks to emphasize how the current research in neuroscience is challenged by never-resting microglia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: FTY720 (fingolimod, Gilenya(TM)), a structural analog of sphingosine-1-phosphate (S1P), is the first oral drug approved for treatment the relapsing-remitting form of multiple sclerosis (MS), and its efficacy has been related to induced lymphopenia and consequent immunosuppression via modulation of S1P(1) receptors (S1P(1)R). However, due to its lipophilic nature, FTY720 crosses the blood brain barrier (BBB) and could act directly on neural cells. In this study, we investigated the effectiveness of FTY720 as a neuroprotective agent using in vitro and in vivo models of excitotoxic neuronal death and examined if FTY720 exerts a direct action on neurons, or/and an indirect modulation of inflammation-mediated neurodegeneration as a possible mechanism of neuroprotection. Methods: Primary neuronal and organotypic cortical cultures were treated with N-methyl-D-aspartic acid (NMDA) to induce excitotoxic cell death (measured by lactate dehydrogenase (LDH) assay or propidium iodide uptake, respectively). The effects of FTY720 treatment (10, 100 and 1,000 nM) on neuronal survival were examined. As an in vivo model of neuronal death and inflammation, we used intracerebroventricular (icv) administration of kainic acid (KA; 0.5 mu g/2 mu l) in Sprague-Dawley rats. FTY720 was applied icv (1 mu g/2 mu l), together with KA, plus intraperitoneally (ip; 1 mg/kg) 24 h before, and daily, until sacrifice 3 days after icv. Rats were evaluated for neurological score, neuronal loss in CA3 hippocampal region and activation of microglia at the lesion site. In addition, we tested FTY720 as a modulator of microglia responses using microglial cell cultures activated with lipopolysaccharide (LPS) and its effects in stress signalling pathways using western blotting for p38 and JNK1/2 mitogen-activated protein kinases (MAPKs). Results: FTY720 was able to reduce excitotoxic neuronal death in vitro. Moreover, in vivo repeated FTY720 administration attenuated KA-induced neurodegeneration and microgliosis at the CA3 lesion site. Furthermore, FTY720 negatively modulates p38 MAPK in LPS-activated microglia, whereas it had no effect on JNK1/2 activation. Conclusions: These data support a role for FTY720 as a neuroprotective agent against excitotoxin-induced neuronal death and as a negative modulator of neuroinflammation by targeting the p38 MAPK stress signalling pathway in microglia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: 5'-deoxy-5'-methylthioadenosine (MTA) is an endogenous compound produced through the metabolism of polyamines. The therapeutic potential of MTA has been assayed mainly in liver diseases and, more recently, in animal models of multiple sclerosis. The aim of this study was to determine the neuroprotective effect of this molecule in vitro and to assess whether MTA can cross the blood brain barrier (BBB) in order to also analyze its potential neuroprotective efficacy in vivo. Methods: Neuroprotection was assessed in vitro using models of excitotoxicity in primary neurons, mixed astrocyte-neuron and primary oligodendrocyte cultures. The capacity of MTA to cross the BBB was measured in an artificial membrane assay and using an in vitro cell model. Finally, in vivo tests were performed in models of hypoxic brain damage, Parkinson's disease and epilepsy. Results: MTA displays a wide array of neuroprotective activities against different insults in vitro. While the data from the two complementary approaches adopted indicate that MTA is likely to cross the BBB, the in vivo data showed that MTA may provide therapeutic benefits in specific circumstances. Whereas MTA reduced the neuronal cell death in pilocarpine-induced status epilepticus and the size of the lesion in global but not focal ischemic brain damage, it was ineffective in preserving dopaminergic neurons of the substantia nigra in the 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine (MPTP)-mice model. However, in this model of Parkinson's disease the combined administration of MTA and an A(2A) adenosine receptor antagonist did produce significant neuroprotection in this brain region. Conclusion: MTA may potentially offer therapeutic neuroprotection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A respiração e a deglutição são vitais para o homem. Enquanto a primeira diz respeito a um ato primitivo da vida, a hematose, a segunda trata da manutenção da vida, oferecendo a energia necessária, nutrindo e hidratando, perpassando pelo prazer alimentar, ato tão importante na sociedade contemporânea. A relação funcional entre essas funções ainda não foi totalmente elucidada, porém é crescente o interesse e o número de estudos sobre esta temática. Considerando que a deglutição eficiente tem como pressuposto a capacidade de proteger via aérea inferior, a alteração de deglutição primária ou secundária a um dano pulmonar pode trazer repercussões severas para a integridade do sistema respiratório. O objetivo desse estudo é analisar o processo sinérgico da deglutição em portadores de bronquiectasia, a fim de verificar se há alteração na fisiologia da deglutição e caracterizá-la, assim como, identificar se há correspondência entre alteração da função pulmonar e alteração da deglutição.Para tal foram selecionados randomicamente 30 pacientes na faixa etária de 18 a 65 anos, atendidos no ambulatório de bronquiectasia do HUPE. Destes, 26 indivíduos responderam a um questionário dirigido sobre hábitos alimentares e possíveis dificuldades de alimentação; foram submetidos à avaliação clínica da deglutição; 22 fizeram espirometria no setor de prova de função pulmonar no HUPE e 17 avaliação videofluoroscópica da deglutição. Dos 26 indivíduos estudados 10 eram homens e 16 mulheres, com média de idade de 46,3 anos. Na avaliação clínica da deglutição observaram-se alterações estruturais e funcionais em todos os indivíduos estudados. As principais alterações estruturais detectadas referem-se e a dinâmica laríngea; enquanto na avaliação funcional detectou-se alterações referentes à ejeção oral, dinâmica hiolaríngea, trânsito faríngeo e presença de deglutições múltiplas. Com relação à espirometria 06 indivíduos apresentaram distúrbio obstrutivo leve; 04 distúrbio obstrutivo moderado e 09 distúrbio obstrutivo acentuado. A videofluoroscopia da deglutição corroborou os achados da avaliação clínica da deglutição e evidenciou episódios de penetração e aspiração laríngea Pode-se concluir que: (1) a avaliação clínica da deglutição associada à avaliação videofluoroscópica são métodos eficientes para a análise do processo sinérgico da deglutição; (2) identificou-se alteração do processo sinérgico da deglutição, nos indivíduos avaliados; (3) a ausculta cervical isoladamente, não demonstrou ser um método eficiente para predizer aspiração e/ou penetração laringotraqueal; (4) houve correspondência entre os resultados da avaliação clínica funcional da deglutição e videofluoroscópica, exceto quanto a presença de penetração e/ou aspiração e quanto a capacidade de avaliar a ejeção oral; (5) não foi possível identificar se há correspondência entre alteração da função pulmonar e processo sinérgico da deglutição.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Neurotrophin-4 (NT-4) can promote neuronal growth, development, differentiation, maturation, and survival. NT-4 can also improve recovery and regeneration of injured neurons, but cannot pass through the blood-brain barrier, which limits its ac

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The thymus of the mandarin fish, Siniperca chuatsi, was examined by light and transmission electron microscopy to understand its formation and cellular composition. Larvae of the mandarin fish were collected and sectioned from 1 to 35 days post-hatching (dph). On dph 7 the thymus was packed with lymphocytes. From 12 dph onward, mucous cells were observed on the epithelial layer; from 23 dph, three zones could be differentiated in the thymic parenchyma. The thymus was connected with the extension of the third, fourth and fifth branchial pouches throughout early development, remaining in a superficial position in the adult S. chuatsi. In the thymus of the adult fish, thymic epithelial cells (TECs) characteristic of tonofilaments were observed, with limiting TECs (LECs) found in subcapsular, subseptal, perivascular and nurse-like TECs containing viable intact lymphocytes inside their vacuoles. In addition, three kinds of granulocytes were observed throughout the thymus, and an incomplete blood-thymus barrier was found in the inner zone. Other cell components such as cystic cells, macrophages and plasma cells, were also described in the thymus of the adult S. chuatsi. The thymus development in mandarin fish agrees, to some extent, with the ontogenetic patterns observed in other fish species.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neurodegenerative diseases like Alzheimer's and Parkinson's disease are associated with elevated levels of iron, copper, and zinc and consequentially high levels of oxidative stress. Given the multifactorial nature of these diseases, it is becoming evident that the next generation of therapies must have multiple functions to combat multiple mechanisms of disease progression. Metal-chelating agents provide one such function as an intervention for ameliorating metal-associated damage in degenerative diseases. Targeting chelators to adjust localized metal imbalances in the brain, however, presents significant challenges. In this perspective, we focus on some noteworthy advances in the area of multifunctional metal chelators as potential therapeutic agents for neurodegenerative diseases. In addition to metal chelating ability, these agents also contain features designed to improve their uptake across the blood-brain barrier, increase their selectivity for metals in damage-prone environments, increase antioxidant capabilities, lower Abeta peptide aggregation, or inhibit disease-associated enzymes such as monoamine oxidase and acetylcholinesterase.