900 resultados para bivariate GARCH-M
Resumo:
Estimation for bivariate right censored data is a problem that has had much study over the past 15 years. In this paper we propose a new class of estimators for the bivariate survival function based on locally efficient estimation. We introduce the locally efficient estimator for bivariate right censored data, present an asymptotic theorem, present the results of simulation studies and perform a brief data analysis illustrating the use of the locally efficient estimator.
Resumo:
We present a state-of-the-art application of smoothing for dependent bivariate binomial spatial data to Loa loa prevalence mapping in West Africa. This application is special because it starts with the non-spatial calibration of survey instruments, continues with the spatial model building and assessment and ends with robust, tested software that will be used by the field scientists of the World Health Organization for online prevalence map updating. From a statistical perspective several important methodological issues were addressed: (a) building spatial models that are complex enough to capture the structure of the data but remain computationally usable; (b)reducing the computational burden in the handling of very large covariate data sets; (c) devising methods for comparing spatial prediction methods for a given exceedance policy threshold.
Resumo:
This paper considers statistical models in which two different types of events, such as the diagnosis of a disease and the remission of the disease, occur alternately over time and are observed subject to right censoring. We propose nonparametric estimators for the joint distribution of bivariate recurrence times and the marginal distribution of the first recurrence time. In general, the marginal distribution of the second recurrence time cannot be estimated due to an identifiability problem, but a conditional distribution of the second recurrence time can be estimated non-parametrically. In literature, statistical methods have been developed to estimate the joint distribution of bivariate recurrence times based on data of the first pair of censored bivariate recurrence times. These methods are efficient in the current model because recurrence times of higher orders are not used. Asymptotic properties of the estimators are established. Numerical studies demonstrate the estimator performs well with practical sample sizes. We apply the proposed method to a Denmark psychiatric case register data set for illustration of the methods and theory.
Resumo:
In medical follow-up studies, ordered bivariate survival data are frequently encountered when bivariate failure events are used as the outcomes to identify the progression of a disease. In cancer studies interest could be focused on bivariate failure times, for example, time from birth to cancer onset and time from cancer onset to death. This paper considers a sampling scheme where the first failure event (cancer onset) is identified within a calendar time interval, the time of the initiating event (birth) can be retrospectively confirmed, and the occurrence of the second event (death) is observed sub ject to right censoring. To analyze this type of bivariate failure time data, it is important to recognize the presence of bias arising due to interval sampling. In this paper, nonparametric and semiparametric methods are developed to analyze the bivariate survival data with interval sampling under stationary and semi-stationary conditions. Numerical studies demonstrate the proposed estimating approaches perform well with practical sample sizes in different simulated models. We apply the proposed methods to SEER ovarian cancer registry data for illustration of the methods and theory.
Resumo:
This paper revisits the issue of conditional volatility in real GDP growth rates for Canada, Japan, the United Kingdom, and the United States. Previous studies find high persistence in the volatility. This paper shows that this finding largely reflects a nonstationary variance. Output growth in the four countries became noticeably less volatile over the past few decades. In this paper, we employ the modified ICSS algorithm to detect structural change in the unconditional variance of output growth. One structural break exists in each of the four countries. We then use generalized autoregressive conditional heteroskedasticity (GARCH) specifications modeling output growth and its volatility with and without the break in volatility. The evidence shows that the time-varying variance falls sharply in Canada, Japan, and the U.K. and disappears in the U.S., excess kurtosis vanishes in Canada, Japan, and the U.S. and drops substantially in the U.K., once we incorporate the break in the variance equation of output for the four countries. That is, the integrated GARCH (IGARCH) effect proves spurious and the GARCH model demonstrates misspecification, if researchers neglect a nonstationary unconditional variance.
Resumo:
Of the large clinical trials evaluating screening mammography efficacy, none included women ages 75 and older. Recommendations on an upper age limit at which to discontinue screening are based on indirect evidence and are not consistent. Screening mammography is evaluated using observational data from the SEER-Medicare linked database. Measuring the benefit of screening mammography is difficult due to the impact of lead-time bias, length bias and over-detection. The underlying conceptual model divides the disease into two stages: pre-clinical (T0) and symptomatic (T1) breast cancer. Treating the time in these phases as a pair of dependent bivariate observations, (t0,t1), estimates are derived to describe the distribution of this random vector. To quantify the effect of screening mammography, statistical inference is made about the mammography parameters that correspond to the marginal distribution of the symptomatic phase duration (T1). This shows the hazard ratio of death from breast cancer comparing women with screen-detected tumors to those detected at their symptom onset is 0.36 (0.30, 0.42), indicating a benefit among the screen-detected cases. ^
(Figure 5) Bivariate scatter plot of magnetic properties from riverine sediments of Tauranga Harbour
Resumo:
We present a methodology for reducing a straight line fitting regression problem to a Least Squares minimization one. This is accomplished through the definition of a measure on the data space that takes into account directional dependences of errors, and the use of polar descriptors for straight lines. This strategy improves the robustness by avoiding singularities and non-describable lines. The methodology is powerful enough to deal with non-normal bivariate heteroscedastic data error models, but can also supersede classical regression methods by making some particular assumptions. An implementation of the methodology for the normal bivariate case is developed and evaluated.
Resumo:
Many practical simulation tasks demand procedures to draw samples efficiently from multivariate truncated Gaussian distributions. In this work, we introduce a novel rejection approach, based on the Box-Muller transformation, to generate samples from a truncated bivariate Gaussian density with an arbitrary support. Furthermore, for an important class of support regions the new method allows us to achieve exact sampling, thus becoming the most efficient approach possible. RESUMEN. Método específico para generar muestras de manera eficiente de Gaussianas bidimensionales truncadas con cualquier zona de truncamiento basado en la transformación de Box-Muller.
Resumo:
A multivariate analysis on flood variables is needed to design some hydraulic structures like dams, as the complexity of the routing process in a reservoir requires a representation of the full hydrograph. In this work, a bivariate copula model was used to obtain the bivariate joint distribution of flood peak and volume, in order to know the probability of occurrence of a given inflow hydrograph. However, the risk of dam overtopping is given by the maximum water elevation reached during the routing process, which depends on the hydrograph variables, the reservoir volume and the spillway crest length. Consequently, an additional bivariate return period, the so-called routed return period, was defined in terms of risk of dam overtopping based on this maximum water elevation obtained after routing the inflow hydrographs. The theoretical return periods, which give the probability of occurrence of a hydrograph prior to accounting for the reservoir routing, were compared with the routed return period, as in both cases hydrographs with the same probability will draw a curve in the peak-volume space. The procedure was applied to the case study of the Santillana reservoir in Spain. Different reservoir volumes and spillway lengths were considered to investigate the influence of the dam and reservoir characteristics on the results. The methodology improves the estimation of the Design Flood Hydrograph and can be applied to assess the risk of dam overtopping
Resumo:
In this article we study the univariate and bivariate truncated von Mises distribution, as a generalization of the von Mises distribution (\cite{jupp1989}), (\cite{mardia2000directional}). This implies the addition of two or four new truncation parameters in the univariate and, bivariate cases, respectively. The results include the definition, properties of the distribution and maximum likelihood estimators for the univariate and bivariate cases. Additionally, the analysis of the bivariate case shows how the conditional distribution is a truncated von Mises distribution, whereas the marginal distribution that generalizes the distribution introduced in \cite{repe}. From the viewpoint of applications, we test the distribution with simulated data, as well as with data regarding leaf inclination angles (\cite{safari}) and dihedral angles in protein chains (\cite{prote}). This research aims to assert this probability distribution as a potential option for modelling or simulating any kind of phenomena where circular distributions are applicable.\par