948 resultados para bis
Resumo:
Methyl 5,6-Bis(2-methoxyphenyt)-1,4-dimethyl-7-oxobicyclo[2.2.1]hept-5-en-2-endo-carboxylate, a moderately crowded norbornenone ester, exhibits complex VT-DNMR behaviour. A similar behaviour is not seen in its 7-oxa analogue, showing that conformational transmission from position 7 has a crucial influence on the distance parameters that govern the dynamic processes involving the substituents on the bicycloheptene framework.
Resumo:
Copper(l) complexes of 1,2-bis(diphenylphosphino)ethane (dppe) with a stoichiometry Cu-2(dppe)(3)(X)(2) [X- = CN- (1), SCN- (2), NO3- (3)] are obtained from direct reactions of CuX and dppe. The complexes are structurally and spectroscopically (NMR and IR) characterized. The structure of the [Cu-2(dPPe)(3)](2+) dication is similar to the structural motif observed in many other complexes with a chelating dppe and a bridging dppe connecting two copper centers. In complexes 1 -3, the anions are confined to the cavity formed by the phosphines which force a monodentate coordination mode despite the predominant bidentate/bridging character of the anions. The coordination angles rather than the thermochemical radii dictate the steric requirement of anions. While the solution behavior of 3, with nitrate, is similar to complexes studied earlier, complexes with pseudohalides exhibit new solution behavior. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Two new classes of mono- and bis-D-pi-A cryptand derivatives with a flexible and a rigid cryptand core have been synthesized. The linear and nonlinear optical properties of these molecules are probed. The three dimensional cavity of the cryptand moiety has been utilized to modulate the SHG intensity to different extents in solution with metal ion inputs such as Ni-II,Cu-II,Zn-II, and Cd-II. We also report that decomplexation events can be used to reversibly modulate their NLO responses.
Resumo:
Copper(l) complexes of bis(phosphine) monoxide ligands, bis(diphenylphosphino)ethane monoxide (dppeo) and bis(diphenylphosphino)methane monoxide (dppmo) have been prepared and characterized. One of the complexes with dppeo was characterized by X-ray crystal structure analysis confirming Cu(I) coordination to hard and soft donors. The stability of these complexes in solution was probed via spectroscopic and electrochemical studies. Copper(I) is more readily oxidized in the presence of the hard 0 donor ligands. In solution, they readily exchange the hard donor O, for soft ligands. Although copper(l) prefers soft ligands and is more stable towards oxidation in their presence, it coordinates to hard donors when there is electrostatic or an entropy driven advantage. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Equilibrium concentrations of various condensed and gaseous phases have been thermodynamically calculated, using the free energy minimization criterion, for the metalorganic chemical vapour deposition (MOCVD) of copper films using bis(2,2,6,6-tetramethyl-3,5-heptadionato)copper(II) as the precursor material. From among the many chemical species that may possibly result from the CVD process, only those expected on the basis of mass spectrometric analysis and chemical reasoning to be present at equilibrium, under different CVD conditions, are used in the thermodynamic calculations. The study predicts the deposition of pure, carbon-free copper in the inert atmosphere of argon as well as in the reactive hydrogen atmosphere, over a wide range of substrate temperatures and total reactor pressures. Thin films of copper, grown on SiO2/Si(100) substrates from this metalorganic precursor by low pressure CVD have been characterized by XRD and AES. The experimentally determined composition of CVD-grown copper films is in reasonable agreement with that predicted by thermodynamic analysis.
Resumo:
Ferromagnetic dicopper(II) complexes [Cu(2)(mu-O(2)CCH(3))(mu-OH)(L)(2)(mu-L(1))](PF(6))(2), where L = 1,10-phenanthroline (phen), L(1) = H(2)O in 1 and L = dipyrido[3,2-d:2',3'-f]quinoxaline (dpq), L(1) = CH(3)CN in 2, are prepared and structurally characterized. Crystals of 1 and 2 belong to the monoclinic space group of P2(1)/n and P2(1)/m, respectively. The copper(II) centers display distorted square-pyramidal geometry having a phenanthroline base and two oxygen atoms of the bridging hydroxo and acetate group in the basal plane. The fifth coordination site has weak axially bound bridging solvent molecule H(2)O in 1 and CH(3)CN in 2. The Cu center dot center dot center dot Cu distances are 3.034 and 3.046 angstrom in 1 and 2, respectively. The complexes show efficient hydrolytic cleavage of supercoiled pUC19 DNA as evidenced from the mechanistic studies that include T4 DNA ligase experiments. The binuclear complexes form monomeric copper(II) adducts [Cu(L)(2)(BNPP)](PF(6)) (L = phen, 3; dpq, 4) with bis(4-nitrophenyl)phosphate (BNPP) as a model phosphodiester. The crystal structures of 3 and 4 reveal distorted trigonal bipyramidal geometry in which BNPP binds through the oxygen atom of the phosphate. The kinetic data of the DNA cleavage reactions of the binuclear complexes under pseudo- and true-Michaelis-Menten conditions indicate remarkable enhancement in the DNA hydrolysis rate in comparison to the control data. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The thiocarbohydrazone Schiff-base ligand with a nitrogen and sulphur donor was synthesized through condensation of pyridine-2-carbaldehyde and thiocarbohydrazide. Schiff-base ligands have the ability to conjugate with metal salts. A series of metal complexes with a general formula [MCl(2)(H(2)L)]center dot nH(2)O (M=Ni, Co, Cu and Zn) were synthesized by forming complexes of the N(1),N5-bis[pyridine-2-methylene]thiocarbohydrazone (H2L) Schiff-base ligand. These metal complexes and ligand were characterized by using ultraviolet-visible (UV-Vis), Fourier Transform Infrared (FT-IR), (1)H and (13)C NMR spectroscopy and mass spectroscopy, physicochemical characterization, CHNS and conductivity. The biological activity of the synthesized ligand was investigated by using Escherichia coli DNA as target. The DNA interaction of the synthesized ligand and complexes on E. coli plasmid DNA was investigated in the aqueous medium by UV-Vis spectroscopy and the binding constant (K(b)) was calculated. The DNA binding studies showed that the metal complexes had an improved interaction due to trans-geometrical isomers of the complexes than ligand isomers in cis-positions. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Internal vibration modes of bis-(alkylammonium) tetrachlorometallates(II) and the corresponding alkylammonium chlorides have been studied through their phase transitions using infrared spectroscopy. The studies show that the vibrational states of alkylammonium ions change markedly through the phase transitions. Spectra of the analogous tetrabromometallates and alkylammonium bromides also confirm this behaviour. There is appreciable motion of the alkylammonium ions in the high-temperature phases; thus, CH3NH+3 ions are essentially undistorted in these phases. The low-temperature, ordered phases show evidence of stronger hydrogen bonding of the cations and for the presence of C—N torsional modes.
Resumo:
In the title compound, C(15)H(10)N(4)O(10), the dihedral angle between the aromatic rings is 89.05 (16)degrees. One O atom of one of the nitro groups is disordered over two sites in a 0.70:0.30 ratio. In the crystal, the molecules are linked by weak C-H center dot center dot center dot O interactions.
Resumo:
The bis(amino)hexachlorocyclotetraphosphazenes, 2-trans-6-N4P4 (NHR)2Cl6, R [dbnd] Me, Pr n Pr i , Bu n , CH2Ph, Ph, are obtained from the reaction of N4P4Cl8 with four mol. equivalents of the appropriate amine. Isomers with 2,4-structures have been isolated for R [dbnd] Bu n , CH2Ph. The 1H and 31P NMR spectra of these bis(amino) compounds and of their dimethylamino derivatives, 2-trans-6-N4P4 (NMe2)6 (NHR)2 are discussed.
Resumo:
Binding of several bisindolylmaleimide (BIS) like (BIS-3, BIS-8 and UCN1) and other ligands (H89, SB203580 and Y27632) with the glycogen synthase kinase-3 (GSK-3 beta) has been studied using combined docking, molecular dynamics and Poisson-Boltzmann surface area analysis approaches. The study generated novel binding modes of these ligands that can rationalize why some ligands inhibit GSK-3 beta while others do not. The relative binding free energies associated with these binding modes are in agreement with the corresponding measured specificities. This study further provides useful insight regarding possible existence of multiple conformations of some ligands like H89 and BIS-8. It is also found that binding modes of BIS-3, BIS-8 and UCN1 with GSK-3 beta and PDK1 kinases are similar. These new insights are expected to be useful for future rational design of novel, more potent GSK-3 beta-specific inhibitors as promising therapeutics.
Resumo:
In the present study, we have tested the cytotoxic and DNA damage activity of two novel bis-1,2,4 triazole derivatives, namely 1,4-bis[5-(5-mercapto-1,3,4-oxadiazol-2-yl-methyl)-thio4-(p-tolyl)-1,2 ,4-triazol-3-yl]-butane (MNP-14) and 1,4-bis[5-(carbethoxy-methyl)-thio-4-(p-ethoxy phenyl) -1,2,4-triazol-3-yl]-butane (MNP-16). The effect of these molecules on cellular apoptosis was also determined. The in-vitro cytotoxicity was evaluated by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay as well as Trypan blue dye exclusion methods against human acute lymphoblastic leukemia (MOLT4) and lung cancer cells (A549). Our results showed that MNP-16 induced significant cytotoxicity (IC50 of 3-5 mu M) compared with MNP-14. The cytotoxicity induced by MNP-16 was time and concentration dependent. The cell cycle analysis by flow cytometry (fluorescence-activated cell sorting [FACS]) revealed that though there was a significant increase in the apoptotic population (sub-G1 phase) with an increased concentration of MNP-14 and 16, there was no cell cycle arrest. Further, the comet assay results indicated considerable DNA
Resumo:
The use of the sulfurdiimide RN=S=NR' (R = R' = SiMe3, 3) in reactions with group 4 metallocene bis(trimethylsilyl)-acetylene complexes of the type [Cp2M(L (eta(2)-Me3Si-C2SiMe3)] (1: M = Ti, no L; 2: M = Zr, L = pyridine) has led to the formation of four-membered metallacycles 4M containing the group 4 metal, nitrogen and sulfur. DFT calculations performed on compound 4Ti indicate that this complex is best described as a sigma-complex with cyclic delocalisation of the ring electrons. Moreover, pseudo-Jahn-Teller distortion plays a significant role in stabilising this complex.
Resumo:
Crystals of a new salt in 2:1 ratio of 2-aminopyridine and malonic acid are grown by slow evaporation. These crystals of bis(2-aminopyridinium) malonate are orthorhombic and belong to the non-centrosymmetric space group, Fdd2 with parameters a = 22.0786(6), b = 23.0218(6), c = 5.5595(1)angstrom and Z=8 at 300 K. The crystals are isostructural to those of bis(2-aminopyridinium) maleate, which is a NLO material. The isostructurality index between bis(2-aminopyridinium) maleate and bis(2-aminopyridinium) malonate was also calculated. The hyperpolarizability calculated using semi empirical method MOPAC2009 showed that bis(2-aminopyridinium) malonate has slightly higher beta value compared to that of bis(2-aminopyridinium) maleate. (C) 2011 Elsevier B.V. All rights reserved.