876 resultados para biotic response to climate change
Resumo:
This thesis argues that examining the attitudes, perceptions, behaviors, and knowledge of a community towards their specific watershed can reveal their social vulnerability to climate change. Understanding and incorporating these elements of the human dimension in coastal zone management will lead to efficient and effective strategies that safeguard the natural resources for the benefit of the community. By having healthy natural resources, ecological and community resilience to climate change will increase, thus decreasing vulnerability. In the Pacific Ocean, climate and SLR are strongly modulated by the El Niño Southern Oscillation. SLR is three times the global average in the Western Pacific Ocean (Merrifield and Maltrud 2011; Merrifield 2011). Changes in annual rainfall in the Western North Pacific sub‐region from 1950-2010 show that islands in the east are getting much less than in the past, while the islands in the west are getting slightly more rainfall (Keener et al. 2013). For Guam, a small island owned by the United States and located in the Western Pacific Ocean, these factors mean that SLR is higher than any other place in the world and will most likely see increased precipitation. Knowing this, the social vulnerability may be examined. Thus, a case-study of the community residing in the Manell and Geus watersheds was conducted on the island of Guam. Measuring their perceptions, attitudes, knowledge, and behaviors should bring to light their vulnerability to climate change. In order to accomplish this, a household survey was administered from July through August 2010. Approximately 350 surveys were analysed using SPSS. To supplement this quantitative data, informal interviews were conducted with the elders of the community to glean traditional ecological knowledge about perceived climate change. A GIS analysis was conducted to understand the physical geography of the Manell and Geus watersheds. This information about the human dimension is valuable to CZM managers. It may be incorporated into strategic watershed plans, to better administer the natural resources within the coastal zone. The research conducted in this thesis is the basis of a recent watershed management plan for the Guam Coastal Management Program (see King 2014).
Resumo:
Phenology, the study of annually recurring life cycle events such as the timing of migrations and flowering, can provide particularly sensitive indicators of climate change. Changes in phenology may be important to ecosystem function because the level of response to climate change may vary across functional groups and multiple trophic levels. The decoupling of phenological relationships will have important ramifications for trophic interactions, altering food-web structures and leading to eventual ecosystem-level changes. Temperate marine environments may be particularly vulnerable to these changes because the recruitment success of higher trophic levels is highly dependent on synchronization with pulsed planktonic production. Using long-term data of 66 plankton taxa during the period from 1958 to 2002, we investigated whether climate warming signals are emergent across all trophic levels and functional groups within an ecological community. Here we show that not only is the marine pelagic community responding to climate changes, but also that the level of response differs throughout the community and the seasonal cycle, leading to a mismatch between trophic levels and functional groups.
Resumo:
The Continuous Plankton Recorder (CPR) survey was conceived from the outset as a programme of applied research designed to assist the fishing industry. Its survival and continuing vigour after 70 years is a testament to its utility, which has been achieved in spite of great changes in our understanding of the marine environment and in our concerns over how to manage it. The CPR has been superseded in several respects by other technologies, such as acoustics and remote sensing, but it continues to provide unrivalled seasonal and geographic information about a wide range of zooplankton and phytoplankton taxa. The value of this coverage increases with time and provides the basis for placing recent observations into the context of long-term, large-scale variability and thus suggesting what the causes are likely to be. Information from the CPR is used extensively in judging environmental impacts and producing quality status reports (QSR); it has shown the distributions of fish stocks, which had not previously been exploited; it has pointed to the extent of ungrazed phytoplankton production in the North Atlantic, which was a vital element in establishing the importance of carbon sequestration by phytoplankton. The CPR continues to be the principal source of large-scale, long-term information about the plankton ecosystem of the North Atlantic. It has recently provided extensive information about the biodiversity of the plankton and about the distribution of introduced species. It serves as a valuable example for the design of future monitoring of the marine environment and it has been essential to the design and implementation of most North Atlantic plankton research.
Resumo:
The global increase in atmospheric carbon dioxide concentration is potentially threatening marine biodiversity in two ways. First, carbon dioxide and other greenhouse gases accumulating in the atmosphere are causing global warming1. Second, carbon dioxide is altering sea water chemistry, making the ocean more acidic2. Although temperature has a cardinal influence on all biological processes from the molecular to the ecosystem level3, acidification might impair the process of calcification or exacerbate dissolution of calcifying organisms4. Here, we show however that North Atlantic calcifying plankton primarily responded to climate-induced changes in temperatures during the period 1960–2009, overriding the signal from the effects of ocean acidification. We provide evidence that foraminifers, coccolithophores, both pteropod and nonpteropod molluscs and echinoderms exhibited an abrupt shift circa 1996 at a time of a substantial increase in temperature5 and that some taxa exhibited a poleward movement in agreement with expected biogeographical changes under sea temperature warming6,7. Although acidification may become a serious threat to marine calcifying organisms, our results suggest that over the study period the primary driver of North Atlantic calcifying planktonwas oceanic temperature.
Resumo:
Broad scale climate forcing can interact with local environmental processes to affect the observed ecological phenomena. This causes potential problems of over-extrapolation for results from a limited number of sites or the averaging out of region-specific responses if data from too wide an area are combined. In this study, an area similar in extent to the Celtic Biscay Large Marine Ecosystem, but including off-shelf areas, was partitioned using clustering of satellite chlorophyll (chl-a) measurements. The resulting clusters were used to define areas over which to combine copepod data from the Continuous Plankton Recorder. Following filtering due to data limitations, nine regions were defined with sufficient records for analysis. These regions were consistent with known oceanographic structure in the study area. Off-shelf regions showed a progressively later timing in the seasonal peak of chl-a measurements moving northwards. Generalised additive models were used to estimate seasonal and multiannual signals in the adult and juvenile stages of Calanus finmarchicus, C. helgolandicus and the Paracalanus–Pseudocalanus group. Associations between variables (sea surface temperature (SST), phenology and annual abundance) differed among taxonomic groups, but even within taxonomic groups, relationships were not consistent across regions. For example, in the deep waters off Spain and Portugal the annual abundance of Calanus finmarchicus has a weak positive association with SST, in contrast to the pattern in most other regions. The regions defined in this study provide an objective basis for investigations into the long term dynamics of plankton populations and suggest suitable sub regions for deriving pelagic system indicators.
Resumo:
The oceans play a key role in climate regulation especially in part buffering (neutralising) the effects of increasing levels of greenhouse gases in the atmosphere and rising global temperatures. This chapter examines how the regulatory processes performed by the oceans alter as a response to climate change and assesses the extent to which positive feedbacks from the ocean may exacerbate climate change. There is clear evidence for rapid change in the oceans. As the main heat store for the world there has been an accelerating change in sea temperatures over the last few decades, which has contributed to rising sea‐level. The oceans are also the main store of carbon dioxide (CO2), and are estimated to have taken up ∼40% of anthropogenic-sourced CO2 from the atmosphere since the beginning of the industrial revolution. A proportion of the carbon uptake is exported via the four ocean ‘carbon pumps’ (Solubility, Biological, Continental Shelf and Carbonate Counter) to the deep ocean reservoir. Increases in sea temperature and changing planktonic systems and ocean currents may lead to a reduction in the uptake of CO2 by the ocean; some evidence suggests a suppression of parts of the marine carbon sink is already underway. While the oceans have buffered climate change through the uptake of CO2 produced by fossil fuel burning this has already had an impact on ocean chemistry through ocean acidification and will continue to do so. Feedbacks to climate change from acidification may result from expected impacts on marine organisms (especially corals and calcareous plankton), ecosystems and biogeochemical cycles. The polar regions of the world are showing the most rapid responses to climate change. As a result of a strong ice–ocean influence, small changes in temperature, salinity and ice cover may trigger large and sudden changes in regional climate with potential downstream feedbacks to the climate of the rest of the world. A warming Arctic Ocean may lead to further releases of the potent greenhouse gas methane from hydrates and permafrost. The Southern Ocean plays a critical role in driving, modifying and regulating global climate change via the carbon cycle and through its impact on adjacent Antarctica. The Antarctic Peninsula has shown some of the most rapid rises in atmospheric and oceanic temperature in the world, with an associated retreat of the majority of glaciers. Parts of the West Antarctic ice sheet are deflating rapidly, very likely due to a change in the flux of oceanic heat to the undersides of the floating ice shelves. The final section on modelling feedbacks from the ocean to climate change identifies limitations and priorities for model development and associated observations. Considering the importance of the oceans to climate change and our limited understanding of climate-related ocean processes, our ability to measure the changes that are taking place are conspicuously inadequate. The chapter highlights the need for a comprehensive, adequately funded and globally extensive ocean observing system to be implemented and sustained as a high priority. Unless feedbacks from the oceans to climate change are adequately included in climate change models, it is possible that the mitigation actions needed to stabilise CO2 and limit temperature rise over the next century will be underestimated.
Resumo:
An overview is provided of the observed and potential future responses of zooplankton communities to global warming. I begin by describing the importance of zooplankton in ocean ecosystems and the attributes that make them sensitive beacons of climate change. Global warming may have even greater repercussions for marine ecosystems than for terrestrial ecosystems, because temperature influences water column stability, nutrient enrichment, and the degree of new production, and thus the abundance, size composition, diversity, and trophic efficiency of zooplankton. Pertinent descriptions of physical changes in the ocean in response to climate change are given as a prelude to a detailed discussion of observed impacts of global warming on zooplankton. These manifest as changes in the distribution of individual species and assemblages, in the timing of important life-cycle events, and in abundance and community structure. The most illustrative case studies, where climate has had an obvious, tangible impact on zooplankton and substantial ecosystem consequences, are presented. Changes in the distribution and phenology of zooplankton are faster and greater than those observed for terrestrial groups. Relevant projected changes in ocean conditions are then presented, followed by an exploration of potential future changes in zooplankton communities from the perspective of different modelling approaches. Researchers have used a range of modelling approaches on individual species and functional groups forced by output from climate models under future greenhouse gas emission scenarios. I conclude by suggesting some potential future directions in climate change research for zooplankton, viz. the use of richer zooplankton functional groups in ecosystem models; greater research effort in tropical systems; investigating climate change in conjunction with other human impacts; and a global zooplankton observing system.
Resumo:
Madagascar's imperilled biota are now experiencing the effects of a new threat—climate change (Raxworthy et al. 2008). With more than 90% endemism among plants, mammals, reptiles and amphibians, the stakes are high. The pristine landscapes that allowed this exceptional biodiversity to survive past climate changes are largely gone. Deforestation has claimed approximately 90% of the island's natural forest (Ingram & Dawson 2005; Harper et al. 2007) and what remains is highly fragmented, providing a poor template for large-scale species range shifts. The impacts of current and future climate change may therefore be much different than past impacts, with profound implications for biodiversity.
We review evidence of past response to climate change, models of future change and projected biological response, developing insights to formulate adaptation actions for reducing extinction in Madagascar's biota. We then explore the cost of implementing actions and examine new income opportunities developing through efforts to mitigate climate change.