1000 resultados para barreira iônica interlamelar


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

É descrita a invenção de um processo de obtenção de membrana de celulose bacteriana iônica que utiliza membrana de celulose bacteriana como matriz polimérica para obtenção de materiais poliméricos condutores iônicos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin polymeric films deposited by plasma are very atractive for many industrial and scientific applications, in areas such as electronics, mechanics, coatings, biomaterials, among others, due to its favorable properties such as good adhesion to the substrate, high crosslinking, nanomectric thickness, homogeneity, etc. In this work, thin films were deposited by plasma immersion ion implantation and deposition technique from a hexamethyldisilazane/argon mixture at different proportions. These films were subjected to several characterizations, such as, contact angle, which presented values near to 100 degrees, surface energy, with values near to 31 mJ/m2, hardness with values between 0.7 and 2.6 GPa, thickness from 100 to 200 nm, refractive index from 1.56 to 1.64, molecular structure presenting the following functional groups in the infrared spectra region: CHx from 2960 to 2900 cm-1; Si-H around 2130 cm-1; CH3 in Si-(CH3)x around 1410 cm-1; CH3 in Si-(CH3)x in 1260 cm-1; N-H around 1180 cm-1; CH2 in Si-CH2-Si bonds around 1025 cm-1; Si-O in Si-O-Si from 1020 to 1100 cm-1; Si-N in Si-H-Si bonds around 940 cm-1; CH3 in Si-(CH3)3 in 850 cm-1; Si-C bonds in Si-(CH3)2 around 800 cm-1; and Si-H in 680 cm-1 . From these characterizations, it was possible to conclude that the concentration of argon or hexamethyldisilazane in the mixture changed the resulting polymer

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, air dielectric barrier discharge (DBD) operating at two different frequencies (60 Hz and 17 kHz) was used to improve surface properties of polypropylene (PP). The changes in surface hydrophilicity were investigated by contact angle measurements. The modifications in chemical composition of PP surface were studied by X-ray photoelectron spectroscopy (XPS) and Fourier-transformed infrared spectroscopy (FTIR). The PP roughness were analyzed before and after the DBD treatment using atomic force microscopy (AFM). In order to compare the results obtained at different frequencies, the analyses are presented as a function of the deposited energy density. The results show that both DBD treatments led to formation of low-molecular weight oxidized material (LMWOM). It tends to agglomerate into small mounts on the surface, as shown by AFM analyses. These structures are weakly bounded to the surface and can be easily removed by rinsing in polar solvents. After washing the DBD-treated samples, the PP partially recovers its original wetting characteristics. This suggests that oxidation also occurred at deeper and more permanent levels on the PP samples. Comparing both DBD treatments, the 17 kHz process was found to be more efficient in introducing oxygen groups to the PP surface

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, plasma immersion ion implantation (PIII) treatments of carbon fibers (CFs) were performed in order to induce modifications of chemical and physical properties of the CF surface aimed to improve the performance of thermoplastic composite. The samples to be treated were immersed in nitrogen or air glow discharge plasma and pulsed at −3.0 kV for 2.0, 5.0, 10.0, and 15.0 min. After PIII processing, the specimens were characterized by atomic force microscopy (AFM), scanning electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). After CFs treatments, the CF/Polypropylene (PP) composites were produced by hot pressing method. Surface morphology of as-received CFs exhibited some scratches aligned along the fibers due to the fiber manufacturing process. After both treatments, these features became deeper, and also, a number of small particles nonuniformly distributed on the fiber surface can be observed. These particles are product of CF surface sputtering during the PIII treatment, which removes the epoxy layer that covers as-received samples. AFM analyses of CF samples treated with nitrogen depicted a large increase of the surface roughness (Rrms value approximately six times higher than that of the untreated sample). The increase of the roughness was also observed for samples treated by air PIII. Raman spectra of all samples presented the characteristic D- and G-bands at approximately 1355 and 1582 cm−1, respectively. Analysis of the surface chemical composition provided by the XPS showed that nitrogen and oxygen were incorporated onto the surface. The polar radicals formed on the surface lead to increasing of the CF surface energy. Both the modification of surface roughness and the surface oxidation contributed for the enhancement of CF adhesion to the polymeric matrix. These features were confirmed ... (Complete abstract click electronic access below)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When materials for application in aircraft structural components are studied, it must be considered that they will be submitted to cyclic loading, and this is an important parameter to design the study in fatigue life of the materials. Whereas, for example, a landing gear operation, the study of fatigue life and corrosion in the materials used in it is essential, especially when you want to use new techniques for surface treatments. The objective is to study the influence of surface treatment of immersion ion implantation nitrogen plasma, in axial fatigue of Stainless steel 15-5 PH in 39-42 HRC condition. Stainless steel 15-5 PH was tested in axial fatigue and corrosion in salt spray. It was also performed microindentation tests, optical microscopy for microstructural analysis and scanning electron microscopy for fractographic analysis. It was observed that the 3IP had no effect on the thickness of the material and not the hardness of it, and still provided a significant increase in fatigue life of the material

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, RVC samples were treated by plasma immersion ion implantation (PIII) for electrodes production. High-voltage pulses with amplitudes of -3.0 kV or -10.0 kV were applied to the RVC samples while the treatment time was 10, 20 and 30 minutes. Nitrogen, atmospheric air and H2:N2 mixture were employed as plasma sources. The samples were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and electrochemical measurements. The SEM images present an apparent enhancement of the surface roughness after the treatment probably due to the surface sputtering during the PIII process. This observation is in agreement with the specific electrochemical surface area (SESA) of RVC electrodes. An increase was observed of the SESA values for the PIII treated samples compared to the untreated specimen. Some oxygen and nitrogen containing groups were introduced on the RVC surface after the PIII treatment. Both plasma-induced process: the surface roughening and the introduction of the polar species on the RVC surface are beneficial for the RVC electrodes application

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)