943 resultados para bare root
Resumo:
Correct modeling of root water uptake partitioning over depth is an important issue in hydrological and crop growth models. Recently a physically based model to describe root water uptake was developed at single root scale and upscaled to the root system scale considering a homogeneous distribution of roots per soil layer. Root water uptake partitioning is calculated over soil layers or compartments as a function of respective soil hydraulic conditions, specifically the soil matric flux potential, root characteristics and a root system efficiency factor to compensate for within-layer root system heterogeneities. The performance of this model was tested in an experiment performed in two-compartment split-pot lysimeters with sorghum plants. The compartments were submitted to different irrigation cycles resulting in contrasting water contents over time. The root system efficiency factor was determined to be about 0.05. Release of water from roots to soil was predicted and observed on several occasions during the experiment; however, model predictions suggested root water release to occur more often and at a higher rate than observed. This may be due to not considering internal root system resistances, thus overestimating the ease with which roots can act as conductors of water. Excluding these erroneous predictions from the dataset, statistical indices show model performance to be of good quality.
Resumo:
The starch of maca (Lepidium meyenii Walpers) presented oval and irregular morphology, with granule size between 7.4 and 14.9 mu m in length and 5.8 and 9.3 mu m in diameter. The isolated starch showed the following features: purity of 87.8%, with 0.28% lipids, 0.2% fibre and 0.12% fixed mineral residue, and no protein detected; the ratio between the amylose and amylopectin contents were 20:80: the solubility at 90 degrees C was 61.4%, the swelling power was 119.0g water/g starch and the water absorption capacity was 45.9 g water/g starch; the gel turbidity rose 44% during the storing time; the gelatinization temperature was 47.7 degrees C and the transition enthalpy 6.22 J/g; the maximum viscosity reached 1260 UB at 46.4 degrees C, with breakdown, setback and consistence of 850, 440 and -410 UB, respectively. The low gelling temperature and the stability during gel refrigeration could be adequate for foods requiring moderate temperature process, but not for frozen food. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
P2X purinoceptors have been suggested to participate in transduction of painful stimuli in nociceptive neurons. In the current experiments, ATP (1-10 mM), alpha,beta-methylene-ATP (10-30 mu M) and capsaicin (10 nM-1 mu M) were applied to neurons impaled with high resistance microelectrodes in rat dorsal root ganglia (L4 and L5) isolated in vitro together with the sciatic nerve and dorsal roots. The agonists were either bath applied or focally applied using a picospritzer. GABA (100 mu M) and 40-80 mM K+ solutions gave brisk responses when applied by either technique. Only three of 22 neurons with slowly conducting axons (C cells) showed evidence of P2X-purinoceptor-mediated responses. Only two of 13 cells which responded to capsaicin (putative nociceptors), and none of 29 cells with rapidly conducting axons (A cells), responded to the purinergic agonists. When acutely dissociated dorsal root ganglion cells were studied using patch-clamp techniques, all but four of 30 cells of all sizes responded with an inward current to either ATP or alpha,beta-methylene-ATP (both 100 mu M). Our data suggest that few sensory cell bodies in intact dorsal root ganglia express functional purinoceptors. (C) 1998 IBRO. Published by Elsevier Science Ltd.
Resumo:
This note considers the value of surface response equations which can be used to calculate critical values for a range of unit root and cointegration tests popular in applied economic research.
Resumo:
Plants require roots to supply water, nutrients and oxygen for growth. The spatial distribution of roots in relation to the macropore structure of the soil in which they are growing influences how effective they are at accessing these resources. A method for quantifying root-macropore associations from horizontal soil sections is illustrated using two black vertisols from the Darling Downs, Queensland, Australia. Two-dimensional digital images were obtained of the macropore structure and root distribution for an area 55 x 55 mm at a resolution of 64 mu m. The spatial distribution of roots was quantified over a range of distances using the K-function. In all specimens, roots were shown to be clustered at short distances (1-10 mm) becoming more random at longer distances. Root location in relation to macropores was estimated using the function describing the distance of each root to the nearest macropore. From this function, a summary variable, termed the macropore sheath, was defined. The macropore sheath is the distance from macropores within which 80% of roots are located. Measured root locations were compared to random simulations of root distribution to establish if there was a preferential association between roots and macropores. More roots were found in and around macropores than expected at random.
Resumo:
Pepper (Capsicum annuum L.) plants were grown aeroponically in a Singapore greenhouse under natural diurnally fluctuating ambient shoot temperatures, but at two different root-zone temperatures (RZTs): a constant 20 +/- 2 degrees C RZT and a diurnally fluctuating ambient (A) (25-40 degrees C) RZT, Plants grown at 20-RZT had more leaves, greater leaf area and dry weight than A-RZT plants. Reciprocal transfer experiments were conducted between RZTs to investigate the effect on plant growth, stomatal conductance (g(s)) and water relations. Transfer of plants from A-RZT to 20-RZT increased plant dry weight, leaf area, number of leaves, shoot water potential (Psi(shoot)), and g(s); while transfer of plants from 20-RZT to A-RZT decreased these parameters. Root hydraulic conductivity was measured in the latter transfer and decreased by 80% after 23 d at A-RZT. Transfer of plants from 20-RZT to A-RZT had no effect on xylem ABA concentration or xylem nitrate concentration, but reduced xylem sap pH by 0.2 units. At both RZTs, g(s) measured in the youngest fully expanded leaves increased with plant development. In plants with the same number of leaves, A-RZT plants had a higher g(s) than 20-RZT plants, but only under high atmospheric vapour pressure deficit. The roles of chemical signals and hydraulic factors in controlling g(s) of aeroponically grown Capsicum plants at different RZTs are discussed.
Resumo:
Direct and simultaneous observation of root growth and plant water uptake is difficult because soils are opaque. X-ray imaging techniques such as projection radiography or Computer Tomography (CT) offer a partial alternative to such limitations. Nevertheless, there is a trade-off between resolution, large field-of-view and 3-dimensionality: With the current state of the technology, it is possible to have any two. In this study, we used X-ray transmission through thin-slab systems to monitor transient saturation fields that develop around roots as plants grow. Although restricted to 2-dimensions, this approach offers a large field-of-view together with high spatial and dynamic resolutions. To illustrate the potential of this technology, we grew peas in 1 cm thick containers filled with soil and imaged them at regular intervals. The dynamics of both the root growth and the water content field that developed around the roots could be conveniently monitored. Compared to other techniques such as X-ray CT, our system is relatively inexpensive and easy to implement. It can potentially be applied to study many agronomic problems, such as issues related to the impact of soil constraints (physical, chemical or biological) on root development.
Resumo:
The plant cyclotides are a family of 28 to 37 amino acid miniproteins characterized by their head-to-tail cyclized peptide backbone and six absolutely conserved Cys residues arranged in a cystine knot motif: two disulfide bonds and the connecting backbone segments form a loop that is penetrated by the third disulfide bond. This knotted disulfide arrangement, together with the cyclic peptide backbone, renders the cyclotides extremely stable against enzymatic digest as well as thermal degradation, making them interesting targets for both pharmaceutical and agrochemical applications. We have examined the expression patterns of these fascinating peptides in various Viola species (Violaceae). All tissue types examined contained complex mixtures of cyclotides, with individual profiles differing significantly. We provide evidence for at least 57 novel cyclotides present in a single Viola species (Viola hederacea). Furthermore, we have isolated one cyclotide expressed only in underground parts of V, hederacea and characterized its primary and three-dimensional structure. We propose that cyclotides constitute a new family of plant defense peptides, which might constitute an even larger and, in their biological function, more diverse family than the well-known plant defensins.
Resumo:
Proteins found in the root exudates are thought to play a role in the interactions between plants and soil organisms. To gain a better understanding of protein secretion by roots, we conducted a systematic proteomic analysis of the root exudates of Arabidopsis thaliana at different plant developmental stages. In total, we identified 111 proteins secreted by roots, the majority of which were exuded constitutively during all stages of development. However, defense-related proteins such as chitinases, glucanases, myrosinases, and others showed enhanced secretion during flowering. Defense-impaired mutants npr1-1 and NahG showed lower levels of secretion of defense proteins at flowering compared with the wild type. The flowering-defective mutants fca-1, stm-4, and co-1 showed almost undetectable levels of defense proteins in their root exudates at similar time points. In contrast, root secretions of defense-enhanced cpr5-2 mutants showed higher levels of defense proteins. The proteomics data were positively correlated with enzymatic activity assays for defense proteins and with in silico gene expression analysis of genes specifically expressed in roots of Arabidopsis. In conclusion, our results show a clear correlation between defense-related proteins secreted by roots and flowering time.
Resumo:
Objectives: We tested two novel drug-eluting stents (DES), covered with a biodegradable-polymer carrier and releasing paclitaxel or sirolimus, which were compared against a bare metal stent (primary objective). The DES differed by the drug, but were identical otherwise, allowing to compare the anti-restenosis effects of sirolimus versus paclitaxel (secondary objective). Background: The efficacy of novel DES with biodegradable polymers should be tested in the context of randomized trials, even when using drugs known to be effective, such as sirolimus and paclitaxel. Methods: Overall, 274 patients with de novo coronary lesions in native vessels scheduled for stent implantation were randomly assigned (2:21 ratio) for the paclitaxel (n = 111), sirolimus (n = 106), or bare metal stent (n = 57) groups. Angiographic follow-up was obtained at 9 months and major cardiac adverse events up to 12 months. Results: Both paclitaxel and sirolimus stents reduced the 9-month in-stent late loss (0.54-0.44 mm, 0.32-0.43 mm, vs. 0.90-0.45 mm respectively), and 1-year risk of target vessel revascularization and combined major adverse cardiac events (P < 0.05 for both, in all comparisons), compared with controls. Sirolimus stents had lower late loss than paclitaxel stents (P < 0.01), but similar 1-year clinical outcomes. There were no differences in the risk of death, infarction, or stent thrombosis among the study groups. Conclusion: Both novel DES were effective in reducing neointimal hyperplasia and 1-year re-intervention, compared to bare metal stents. Our findings also suggest that sirolimus is more effective than paclitaxel in reducing angiographic neointima, although this effect was not associated with better clinical outcomes. (C) 2009 Wiley-Liss, Inc.
Resumo:
Aims: There remains significant concern about the long-term safety of drug-eluting stents (DES). However, bare metal stents (BMS) have been used safely for over two decades. There is therefore a pressing need to explore alternative strategies for reducing restenosis with BMS. This study was designed to examine whether IVUS-guided cutting balloon angioplasty (CBA) with BMS could convey similar restenosis rates to DES. Methods and results: In the randomised REstenosis reDUction by Cutting balloon angioplasty Evaluation (REDUCE III) study, 521 patients were divided into four groups based on device and IVUS use before BMS (IVUS-CBA-BMS: 137 patients; Angio-CBA-BMS: 123; IVUS-BA-BMS: 142; and Angio-BA-BMS: 119). At follow-up, the IVUS-CBA-BMS group had a significantly lower restenosis rate (6.6%) than the other groups (p=0.016). We performed a quantitative coronary angiography (QCA) based matched comparison between an IVUS-guided CBA-BMS strategy (REDUCE III) and a DES strategy (Rapamycin-Eluting-Stent Evaluation At Rotterdam Cardiology. Hospital, the RESEARCH study). We matched the presence of diabetes, vessel size, and lesion severity by QCA. Restenosis (>50% diameter stenosis at follow-up) and target vessel revascularisation (TVR) were examined. QCA-matched comparison resulted in 120-paired lesions. While acute gain was significantly greater in IVUS-CBA-BMS than DES (1.65 +/- 0.41 mm vs. 1.28 +/- 0.57 mm, p=0.001), late loss was significantly less with DES than with IVUS-CBA-BMS (0.03 +/- 0.42 mm vs. 0.80 +/- 0.47 mm, p=0.001). However, no difference was found in restenosis rates (IVUS-CBA-BMS: 6.6% vs. DES: 5.0%, p=0.582) and TVR (6.6% and 6.6%, respectively). Conclusions: An IVUS-guided CBA-BMS strategy yielded restenosis rates similar to those achieved by DES and provided an effective alternative to the use of DES.
Resumo:
Rms1 is one of the series of five ramosus loci in pea (Pisum sativum L.) in which recessive mutant alleles confer increased branching at basal and aerial vegetative nodes. Shoots of the nonallelic rms1 and rms2 mutants are phenotypically similar in most respects. However, we found an up to 40-fold difference in root-sap zeatin riboside ([9R]Z) concentration between rms1 and rms2 plants. Compared with wild-type (WT) plants, the concentration of [9R]Z in rms1 root sap was very low and the concentration in rms2 root sap was slightly elevated. To our knowledge, the rms1 mutant is therefore the second ramosus mutant (rms4 being the first) to be characterized with low root-sap [9R]Z content. Like rms2, the apical bud and upper nodes of rms1 plants contain elevated indole-3-acetic acid levels compared with WT shoots. Therefore, the rms1 mutant demonstrates that high shoot auxin levels and low root-sap cytokinin levels are not necessarily correlated with increased apical dominance in pea. A graft-transmissible basis of action has been demonstrated for both mutants from reciprocal grafts between mutant and WT plants. Branching was also largely inhibited in rms1 shoots when grafted to rms2 rootstocks, but was not inhibited in rms2 shoots grafted to rms1 rootstocks. These grafting results are discussed, along with the conclusion that hormone-like signals other than auxin and cytokinin are also involved.
Resumo:
BACKGROUND: In patients with supraclavicular injuries of the brachial plexus, the suprascapular nerve (SSN) is frequently reconstructed with a sural nerve graft coapted to C5. As the C5 cross-sectional diameter exceeds the graft diameter, inadequate positioning of the graft is possible. OBJECTIVE: To identify a specific area within the C5 proximal stump that contains the SSN axons and to determine how this area could be localized by the nerve surgeon, we conducted a microanatomic study of the intraplexal topography of the SSN. METHODS: The right-sided C5 and C6 roots, the upper trunk with its divisions, and the SSN of 20 adult nonfixed cadavers were removed and fixed. The position and area occupied by the SSN fibers inside C5 were assessed and registered under magnification. RESULTS: The SSN was monofascicular in all specimens and derived its fibers mainly from C5. Small contributions from C6 were found in 12 specimens (60%). The mean transverse area of C5 occupied by SSN fibers was 28.23%. In 16 specimens (80%), the SSN fibers were localized in the ventral (mainly the rostroventral) quadrants of C5, a cross-sectional area between 9 o`clock and 3 o`clock from the surgeon`s intraoperative perspective. CONCLUSION: In reconstruction of the SSN with a sural nerve graft, coaptation should be performed in the rostroventral quadrant of C5 cross-sectional area (between 9 and 12 o`clock from the nerve surgeon`s point of view in a right-sided brachial plexus exploration). This will minimize axonal misrouting and may improve outcome.
Dorsal root ganglionectomy for the diagnosis of sensory neuropathies. Surgical technique and results
Resumo:
Background: Inflammatory diseases stand out among sensory neuronopathies because, in their active phase, they can be treated with immunosuppressive agents. Immunosuppressive therapy may present severe adverse effects and requires previous inflammatory activity confirmation. Sensory neuronopathies are diagnosed based on clinical and EMG findings. Diagnostic confirmation and identification of inflammatory activity are based on sensory ganglion histopathological examination. We describe the surgical technique used for dorsal root ganglionectomy in patients with clinical/EMG diagnosis of sensory neuronopathies. Methods: The sensory ganglion was obtained from 15 patients through a small T7-T8 hemilaminectomy and foraminotomy to expose the C7 root from its origin to the spinal nerve bifurcation. In 6 patients, the dural cuff supposed to contain the ganglion was resected en bloc; and in 9 patients, the ganglion was obtained through a longitudinal incision of the dural cuff and microsurgical dissection from the ventral and dorsal roots and radicular arteries. All ganglia were histopathologically examined. Results: No ganglion was found in the dural cuff in 2 patients submitted to en bloc removal, and the ganglion was removed in all patients who underwent microsurgical dissection. All but 2 patients that had ganglion examination presented a neuronopathy of nerve cell loss, 3 with mononuclear inflammatory infiltrate. These patients underwent immunosuppressive therapy, and 2 of them presented clinical improvement. No surgical complications were observed. Conclusions: Microsurgical dorsal root ganglionectomy for diagnosing inflammatory sensory ganglionopathies was effective and safe. Although safe, en bloc resection of the proximal dural cuff was not effective for this purpose. (c) 2008 Published by Elsevier Inc.
Resumo:
The purpose of this study was to evaluate the effect of erbium:yttrium-aluminum-garnet (Er:YAG) laser (2.94 mu m) irradiation on the removal of root surface smear layer of extracted human teeth and to compare its efficacy with that of citric acid, ethylenediamine tetra-acetic acid (EDTA), or a gel containing a mixture of tetracycline hydrochloride (HCl) and citric acid, using scanning electron microscopy (SEM). Thirty human dentin specimens were randomly divided into six groups: G1 (control group), irrigated with 10 ml of physiologic saline solution; G2, conditioned with 24% citric acid gel; G3, conditioned with 24% EDTA gel; G4, conditioned with a 50% citric acid and tetracycline gel; G5, irradiated with Er:YAG laser (47 mJ/10 Hz/5.8 J/cm(2)/pulse); G6, irradiated with Er:YAG laser (83 mJ/10 Hz/10.3 J/cm(2)/pulse). Electron micrographs were obtained and analyzed according to a rating system. Statistical analysis was conducted with Kruskal-Wallis and Mann-Whitney tests (P < 0.05). G1 was statistically different from all the other groups; no statistically significant differences were observed between the Er:YAG laser groups and those undergoing the other treatment modalities. When the two Er:YAG laser groups were compared, the fluency of G6 was statistically more effective in smear layer removal than the one used in G5 (Mann-Whitney test, P < 0.01). Root surfaces irradiated by Er:YAG laser had more irregular contours than those treated by chemical agents. It can be concluded that all treatment modalities were effective in smear layer removal. The results of our study suggest that the Er:YAG laser can be safely used to condition diseased root surfaces effectively. Furthermore, the effect of Er:YAG laser irradiation on root surfaces should be evaluated in vivo so that its potential to enhance the healing of periodontal tissues can be assessed.