972 resultados para ball milling


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanoparticles are of immense importance both from the fundamental and application points of view. They exhibit quantum size effects which are manifested in their improved magnetic and electric properties. Mechanical attrition by high energy ball milling (HEBM) is a top down process for producing fine particles. However, fineness is associated with high surface area and hence is prone to oxidation which has a detrimental effect on the useful properties of these materials. Passivation of nanoparticles is known to inhibit surface oxidation. At the same time, coating polymer film on inorganic materials modifies the surface properties drastically. In this work a modified set-up consisting of an RF plasma polymerization technique is employed to coat a thin layer of a polymer film on Fe nanoparticles produced by HEBM. Ball-milled particles having different particle size ranges are coated with polyaniline. Their electrical properties are investigated by measuring the dc conductivity in the temperature range 10–300 K. The low temperature dc conductivity (I–V ) exhibited nonlinearity. This nonlinearity observed is explained on the basis of the critical path model. There is clear-cut evidence for the occurrence of intergranular tunnelling. The results are presented here in this paper

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bulk polycrystalline samples in the series Ti1−xNbxS2 (0 ≤ x ≤ 0.075) were prepared using mechanical alloying synthesis and spark plasma sintering. X-ray diffraction analysis coupled with high resolution transmission electron microscopy indicates the formation of trigonal TiS2 by high energy ball-milling. The as-synthesized particles consist of pseudo-ordered TiS2 domains of around 20–50 nm, joined by bent atomic planes. This bottom-up approach leads, after spark plasma sintering, to homogeneous solid solutions, with a niobium solubility limit of x = 0.075. Microstructural observations evidence the formation of small crystallites in the bulk compounds with a high density of stacking faults. The large grain boundary concentration coupled with the presence of planar defects, leads to a substantial decrease in the thermal conductivity to 1.8 W/mK at 700 K. This enables the figure of merit to reach ZT = 0.3 at 700 K for x = 0.05, despite the lower electron mobility in mechanically alloyed samples due to small crystallite/grain size and structural defects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work we report results on the influence of heavy rare earth ions substitution on microstructure and magnetism of nanocrystalline magnetite. A series of Fe(2.85)RE(0.15)O(4) (RE = Gd, Dy, Ho, Tm and Yb) samples have been prepared by high energy ball milling. Structure/microstructure investigations of two selected samples Fe(2.85)Gd(0.15)O(4) and Fe(2.85)Tm(0.15)O(4), represent an extension of the previously published results on Fe(3)O(4)/gamma-Fe(2)O(3), Fe(2.85)Y(0.15)O(4) and Fe(2.55)In(0.45)O(4) [Z. Cvejic, S. Rakic, A. Kremenovic, B. Antic, C. Jovalekic. Ph. Colomban, Sol. State Sciences 8 (2006) 908], while magnetic characterization has been done for all the samples. Crystallite/particle size and strain determined by X-ray diffractometry and Transmission electron microscopy (TEM) confirmed the nanostructured nature of the mechanosynthesized materials. X-ray powder diffraction was used to analyze anisotropic line broadening effects through the Rietveld method. The size anisotropy was found to be small while strain anisotropy was large, indicating nonuniform distribution of deffects in the presence of Gd and Tm in the crystal structure. Superparamagnetic(SPM) behavior at room temperature was observed for all samples studied. The Y-substituted Fe(3)O(4) had the largest He and the lowest M(S). We discuss the changes in magnetic properties in relation to their magnetic anisotropy and microstructure. High field irreversibility (H>20kOe) in ZFC/FC magnetization versus temperature indicates the existence of high magnetocrystalline and/or strain induced anisotropy. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present study, Ti-16Sn-4Nb alloy was prepared by mechanical alloying (MA). Optical microscopy, scanning electron microscopy combined with energy dispersive X-ray analysis (SEM-EDX), and X-ray diffraction analysis (XRD) were used to characterise the phase transformation and the microstructure evolution. Results indicated that ball milling to 8 h led to the formation of a supersaturated hcp α-Ti and partial amorphous phase due to the solid solution of Sn and Nb into Ti lattice. The microstructure of the bulk sintered Ti-16Sn-4Nb alloy samples made from the powders at shorter ball milling times, i.e. 20 min- 2 h, exhibited a primary α surrounded by a Widmanstätten structure (transformed β); while in the samples made from the powders at longer ball milling times, i.e. 5- 10 h, the alloy evolved to a microstructure with a disordered and fine β phase dispersed homogeneously within the α matrix. These results contribute to the understanding of the microstructure evolution in alloys of this type prepared by powder metallurgy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Titanium (Ti) and nickel (Ni) elemental powders were blened by ball milling and the ball milled powders were employed to fabricate NiNi shape memory alloy (SMA) foams by space sintering. Effect of ball milling time on phase constitutes of the sintered TiNi alloy foams was studied by X-ray diffraction (XRD) analysis.Scanning election microscopy (SEM) was used to characterize the porous structure, and compressive tests were carried out to evaluate the mechanical properties of the foams. Results indicate the porosities of the TiNi alloy foams can be controlled by using the spacer sincering method, and the porosities show a significant effect on the mechanical prperties and shape memory effect (SME).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multi-walled carbon nanotubes with cylindrical and bamboo-type structures are produced in a graphite sample after mechanical milling at ambient temperature and subsequent thermal annealing up to 1400 °C. The ball milling produces a precursor structure and the thermal annealing activates the nanotube growth. Different nanotubular structures indicate different formation mechanisms: multi-wall cylindrical carbon nanotubes are probably formed upon micropores and the bamboo tubes are produced because of the metal catalysts. A two-dimensional growth governed by surface diffusion is believed to be one important factor for the nanotube growth. A potential industrial production method is demonstrated with advantages of large production quantity and low cost.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A purification process was developed for the first time for boron nitride (BN) nanotubes. BN nanotubes, prepared using a ball milling and annealing method, contain a high yield of nanotubes and a small amount of BN and metal catalyst particles. The metal particles can be dissolved in an HCl solution. Fine BN nanoparticles and thin layers were first converted to water soluble B2O3 via a partial oxidation treatment at 800 °C. The oxide particles and layers can then be dissolved in hot water. Thermogravimetric analysis has been used to determine an adequate oxidation temperature at which fine BN particles were oxidized.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We reported 11B nuclear magnetic resonance studies of boron nitride (BN) nanotubes prepared by mechano-thermal route. The NMR lineshape obtained at 192.493 MHz (14.7 T) was fitted with two Gaussian functions, and the 11B nuclear magnetization relaxations were satisfied with the stretched–exponential function, exp[-(tlT1)(D+1)/6] (D: space dimension) at all temperatures. In addition, the temperature dependence of spin–lattice relaxation rates was well described by Ti-1 = aT (a: constant, T: temperature) and could be understood in terms of direct phonon process. All the 11BNMR results were explained by considering the inhomogeneous distribution of the paramagnetic metal catalysts, such as α-Fe, Fe–N, and Fe2 B, that were incorporated during the process of high-energy ball milling of boron powder and be synthesized during subsequent thermal annealing. X-ray powder diffraction as well as electron paramagnetic resonance (EPR) on BN nanotubes were also conducted and the results obtained supported these conclusions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Substitution reactions between multiwalled carbon nanotubes and silicon monoxide vapour have been investigated using transmission electron microscopy. Different reactions occurred inside the multiwalled nanotubes and on the nanotube external surfaces, resulting in the formation of silicon carbide nanowires with a core–shell structure. The substitution reaction process and end products are strongly affected by nanotube structures and a ball milling treatment of the starting materials.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Prismatic boron nitride nanorods have been grown on single crystal silicon substrates by mechanical ball-milling followed by annealing at 1300 °C. Growth takes place by rapid surface diffusion of BN molecules, and follows heterogeneous nucleation at catalytic particles of an Fe/Si alloy. Lattice imaging transmission electron microscopy studies reveal a central axial row of rather small truncated pyramidal nanovoids on each nanorod, surrounded by three basal planar BN domains which, with successive deposition of epitaxial layers adapt to the void geometry by crystallographic faceting. The bulk strain in the nanorods is taken up by the presence of what appear to be simple nanostacking faults in the external, near-surface domains which, like the nanovoids are regularly repetitive along the nanorod length. Growth terminates with a clear cuneiform tip for each nanorod. Lateral nanorod dimensions are essentially determined by the size of the catalytic particle, which remains as a foundation essentially responsible for base growth. Growth, structure, and dominating facets are shown to be consistent with a system which seeks lowest bulk and surface energies according to the well-known thermodynamics of the capillarity of solids.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High-yield multiwalled boron nitride (BN) nanotubes have been produced using a ball milling-annealing method. The BN nanotubes with a diameter less than 10 nm and a well-crystallized multiwalled structure were formed via an in situ nitriding reaction. The systematic investigation of the formation process at different annealing temperatures and for different times suggested that the formation of the unique multiwalled structure was attributed by a two-dimensional growth of the BN phase and a nonmetal catalytic growth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The wool fibre has a complex morphology, consisting of an outer layer of cuticle scales surrounding an inner cortex. These two components are hard to separate effectively except by using harsh chemical treatments, making it difficult to determine the susceptibility of the different components of the fibre to photoyellowing. An approach to this problem based on mechanical fibre modification is described. To expose the inner cortex of wool to different degrees, clean wool fibres were converted into ‘powders’ of various fineness via mechanical chopping, air-jet milling, ball milling or their combination. Four types of powdered wool (samples A, B, C and D) were produced with reducing particle size distributions and an increasing level of surface damage as observed using SEM. Sample A contained essentially intact short fibre snippets and sample D contained a large amount of exposed cortical materials. Samples B and C contained a mixture of short fibre snippets and cortical materials. Solid wool discs were then compressed from the corresponding powder samples in a polished stainless steel die to enable colour measurement and UV irradiation studies. ATR-FTIR studies on powder discs demonstrated a small shift in the amide I band from 1644 cm−1 for disc A to 1654 cm−1 for disc D due to the different structures of the wool cuticle and cortex, in agreement with previous studies. Similarly an increase in the intensity ratio of the amide I to amide II band (1540 cm−1) was observed for disc D, which contains a higher fraction of cortical material at the surface of the disc.

Discs prepared from sample D appeared the lightest in colour before exposure and had the slowest photoyellowing rate, whereas discs made from powders A–C with a higher level of cuticle coverage were more yellow before exposure and experienced a faster rate of photoyellowing. This suggests that the yellow chromophores of wool may be more prevalent in cuticle scales, and that wool photoyellowing occurs to a greater extent in the cuticle than in the cortex. Photo-induced chemiluminescence measurements showed that sample D had a higher chemiluminescence intensity after exposure to UVA radiation and a faster decay rate than samples A and B. Thus one of the roles of the wool cuticle may be to protect the cortex by quenching of free radical oxidation during exposure to the UV wavelengths present in sunlight.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The microstructural evolution and characteristics of the Ti–16Sn–4Nb powder particles and bulk alloys sintered from the powders ball-milled for various periods of time were studied. Results indicated that ball milling to 8 h led to the development of a supersaturated hcp α-Ti and partial amorphous phase due to the solid solution of Sn and Nb into Ti lattice. The bulk Ti–16Sn–4Nb alloy made from the powders ball milled for a short time, up to 2 h, exhibited a primary α and a Widmanstätten structure consisting of interlaced secondary α and β. With an increase in ball milling time up to 10 h, the microstructure evolved into a fine β phase dispersed homogeneously within α phase matrix. The microhardness values of the bulk alloy in both α- and β-phases increased with the increasing of the ball milling time and reached a plateau value at 8 h and longer, i.e. 687 and 550 HV for α- and β-phases, respectively. Likewise, the microhardness of the α phases was always higher than that of the β phases in the bulk alloys made from the powders ball milled for the same milling time.