932 resultados para audio visual speech recognition
Resumo:
This article is inserted in a study aimed at the identification of the main barriers for the inclusion of visually-impaired students in Physics classes. It focuses on the understanding of the communication context which facilitates or hardens the effective participation of students with visual impairment in Mechanics activities. To do so, the research defines, from empirical - sensory and semantic structures, the language to be applied in the activities, as well as, the moment and the speech pattern in which the languages have been used. As a result, it identifies the rela tion between the uses of the interdependent audio-visual empirical lan guage structure in the non-interactive episodes of authority; the decrease in the use of this structure in interactive episodes; the creation of educa tional segregation environments within the classroom and the frequent use of the interdependent tactile-hearing empirical language structure in such environments.
Resumo:
This article represents a continuation of the results of a research presented in Camargo and Nardi (2007). It is inserted in the study that seeks to understand the main student’s inclusion barriers with visual impairment in the Physics classes. It aims to understand which communication context shows kindness or unkindness to the impairment visual student’s real participation in thermology activities. For this, the research defines, from the empirical - sensory and semantics structures, the used languages in the activities, as well, the moment and the speech pattern in which the languages have been used. As result, identifies a strong relation between the uses of the interdependent empirical structure audio-visual language in the non-interactive episodes of authority; a decrease of this structure use in the interactive episodes and the creation of education segregation environments within the classroom.
Resumo:
This article is inserted in a wider study that seeks to understand the main inclusion barriers in Physics classes for students with visual impairment It aims to understand which communication context favors or impedes the visually impaired student participation to the impairment visual student’s real participation in Modern Physics activities. The research defines, from the empirical-sensory and semantics structures, the languages used in the activities, as well as, the moment and the speech pattern in which those languages have been used. As a result, this study identifies a strong relation between the uses of the interdependent empirical structure audio-visual language in the non-interactive episodes of authority; a decrease of this structure use in the interactive episodes; the creation of education segregation environments within the clasroom and the frequent use of empirical tactile-hearing interdependent language structure in these environments. Moreover, the concept of «special educational need» is discussed and its inadequate use is analyzed. Suggestions are given for its correct use of «special educational need,» its inadequate use, giving suggestions for its correct use.
Resumo:
The ability of integrating into a unified percept sensory inputs deriving from different sensory modalities, but related to the same external event, is called multisensory integration and might represent an efficient mechanism of sensory compensation when a sensory modality is damaged by a cortical lesion. This hypothesis has been discussed in the present dissertation. Experiment 1 explored the role of superior colliculus (SC) in multisensory integration, testing patients with collicular lesions, patients with subcortical lesions not involving the SC and healthy control subjects in a multisensory task. The results revealed that patients with collicular lesions, paralleling the evidence of animal studies, demonstrated a loss of multisensory enhancement, in contrast with control subjects, providing the first lesional evidence in humans of the essential role of SC in mediating audio-visual integration. Experiment 2 investigated the role of cortex in mediating multisensory integrative effects, inducing virtual lesions by inhibitory theta-burst stimulation on temporo-parietal cortex, occipital cortex and posterior parietal cortex, demonstrating that only temporo-parietal cortex was causally involved in modulating the integration of audio-visual stimuli at the same spatial location. Given the involvement of the retino-colliculo-extrastriate pathway in mediating audio-visual integration, the functional sparing of this circuit in hemianopic patients is extremely relevant in the perspective of a multisensory-based approach to the recovery of unisensory defects. Experiment 3 demonstrated the spared functional activity of this circuit in a group of hemianopic patients, revealing the presence of implicit recognition of the fearful content of unseen visual stimuli (i.e. affective blindsight), an ability mediated by the retino-colliculo-extrastriate pathway and its connections with amygdala. Finally, Experiment 4 provided evidence that a systematic audio-visual stimulation is effective in inducing long-lasting clinical improvements in patients with visual field defect and revealed that the activity of the spared retino-colliculo-extrastriate pathway is responsible of the observed clinical amelioration, as suggested by the greater improvement observed in patients with cortical lesions limited to the occipital cortex, compared to patients with lesions extending to other cortical areas, found in tasks high demanding in terms of spatial orienting. Overall, the present results indicated that multisensory integration is mediated by the retino-colliculo-extrastriate pathway and that a systematic audio-visual stimulation, activating this spared neural circuit, is able to affect orientation towards the blind field in hemianopic patients and, therefore, might constitute an effective and innovative approach for the rehabilitation of unisensory visual impairments.
Resumo:
Lesions to the primary geniculo-striate visual pathway cause blindness in the contralesional visual field. Nevertheless, previous studies have suggested that patients with visual field defects may still be able to implicitly process the affective valence of unseen emotional stimuli (affective blindsight) through alternative visual pathways bypassing the striate cortex. These alternative pathways may also allow exploitation of multisensory (audio-visual) integration mechanisms, such that auditory stimulation can enhance visual detection of stimuli which would otherwise be undetected when presented alone (crossmodal blindsight). The present dissertation investigated implicit emotional processing and multisensory integration when conscious visual processing is prevented by real or virtual lesions to the geniculo-striate pathway, in order to further clarify both the nature of these residual processes and the functional aspects of the underlying neural pathways. The present experimental evidence demonstrates that alternative subcortical visual pathways allow implicit processing of the emotional content of facial expressions in the absence of cortical processing. However, this residual ability is limited to fearful expressions. This finding suggests the existence of a subcortical system specialised in detecting danger signals based on coarse visual cues, therefore allowing the early recruitment of flight-or-fight behavioural responses even before conscious and detailed recognition of potential threats can take place. Moreover, the present dissertation extends the knowledge about crossmodal blindsight phenomena by showing that, unlike with visual detection, sound cannot crossmodally enhance visual orientation discrimination in the absence of functional striate cortex. This finding demonstrates, on the one hand, that the striate cortex plays a causative role in crossmodally enhancing visual orientation sensitivity and, on the other hand, that subcortical visual pathways bypassing the striate cortex, despite affording audio-visual integration processes leading to the improvement of simple visual abilities such as detection, cannot mediate multisensory enhancement of more complex visual functions, such as orientation discrimination.
Resumo:
Audio-visual documents obtained from German TV news are classified according to the IPTC topic categorization scheme. To this end usual text classification techniques are adapted to speech, video, and non-speech audio. For each of the three modalities word analogues are generated: sequences of syllables for speech, “video words” based on low level color features (color moments, color correlogram and color wavelet), and “audio words” based on low-level spectral features (spectral envelope and spectral flatness) for non-speech audio. Such audio and video words provide a means to represent the different modalities in a uniform way. The frequencies of the word analogues represent audio-visual documents: the standard bag-of-words approach. Support vector machines are used for supervised classification in a 1 vs. n setting. Classification based on speech outperforms all other single modalities. Combining speech with non-speech audio improves classification. Classification is further improved by supplementing speech and non-speech audio with video words. Optimal F-scores range between 62% and 94% corresponding to 50% - 84% above chance. The optimal combination of modalities depends on the category to be recognized. The construction of audio and video words from low-level features provide a good basis for the integration of speech, non-speech audio and video.
Resumo:
OBJECTIVE To analyze speech reading through Internet video calls by profoundly hearing-impaired individuals and cochlear implant (CI) users. METHODS Speech reading skills of 14 deaf adults and 21 CI users were assessed using the Hochmair Schulz Moser (HSM) sentence test. We presented video simulations using different video resolutions (1280 × 720, 640 × 480, 320 × 240, 160 × 120 px), frame rates (30, 20, 10, 7, 5 frames per second (fps)), speech velocities (three different speakers), webcameras (Logitech Pro9000, C600 and C500) and image/sound delays (0-500 ms). All video simulations were presented with and without sound and in two screen sizes. Additionally, scores for live Skype™ video connection and live face-to-face communication were assessed. RESULTS Higher frame rate (>7 fps), higher camera resolution (>640 × 480 px) and shorter picture/sound delay (<100 ms) were associated with increased speech perception scores. Scores were strongly dependent on the speaker but were not influenced by physical properties of the camera optics or the full screen mode. There is a significant median gain of +8.5%pts (p = 0.009) in speech perception for all 21 CI-users if visual cues are additionally shown. CI users with poor open set speech perception scores (n = 11) showed the greatest benefit under combined audio-visual presentation (median speech perception +11.8%pts, p = 0.032). CONCLUSION Webcameras have the potential to improve telecommunication of hearing-impaired individuals.
Resumo:
This paper describes the GTH-UPM system for the Albayzin 2014 Search on Speech Evaluation. Teh evaluation task consists of searching a list of terms/queries in audio files. The GTH-UPM system we are presenting is based on a LVCSR (Large Vocabulary Continuous Speech Recognition) system. We have used MAVIR corpus and the Spanish partition of the EPPS (European Parliament Plenary Sessions) database for training both acoustic and language models. The main effort has been focused on lexicon preparation and text selection for the language model construction. The system makes use of different lexicon and language models depending on the task that is performed. For the best configuration of the system on the development set, we have obtained a FOM of 75.27 for the deyword spotting task.
Resumo:
Assistive technology involving voice communication is used primarily by people who are deaf, hard of hearing, or who have speech and/or language disabilities. It is also used to a lesser extent by people with visual or motor disabilities. A very wide range of devices has been developed for people with hearing loss. These devices can be categorized not only by the modality of stimulation [i.e., auditory, visual, tactile, or direct electrical stimulation of the auditory nerve (auditory-neural)] but also in terms of the degree of speech processing that is used. At least four such categories can be distinguished: assistive devices (a) that are not designed specifically for speech, (b) that take the average characteristics of speech into account, (c) that process articulatory or phonetic characteristics of speech, and (d) that embody some degree of automatic speech recognition. Assistive devices for people with speech and/or language disabilities typically involve some form of speech synthesis or symbol generation for severe forms of language disability. Speech synthesis is also used in text-to-speech systems for sightless persons. Other applications of assistive technology involving voice communication include voice control of wheelchairs and other devices for people with mobility disabilities.
Resumo:
Situational awareness is achieved naturally by the human senses of sight and hearing in combination. Automatic scene understanding aims at replicating this human ability using microphones and cameras in cooperation. In this paper, audio and video signals are fused and integrated at different levels of semantic abstractions. We detect and track a speaker who is relatively unconstrained, i.e., free to move indoors within an area larger than the comparable reported work, which is usually limited to round table meetings. The system is relatively simple: consisting of just 4 microphone pairs and a single camera. Results show that the overall multimodal tracker is more reliable than single modality systems, tolerating large occlusions and cross-talk. System evaluation is performed on both single and multi-modality tracking. The performance improvement given by the audio–video integration and fusion is quantified in terms of tracking precision and accuracy as well as speaker diarisation error rate and precision–recall (recognition). Improvements vs. the closest works are evaluated: 56% sound source localisation computational cost over an audio only system, 8% speaker diarisation error rate over an audio only speaker recognition unit and 36% on the precision–recall metric over an audio–video dominant speaker recognition method.
Resumo:
The production and perception of music is a multimodal activity involving auditory, visual and conceptual processing, integrating these with prior knowledge and environmental experience. Musicians utilise expressive physical nuances to highlight salient features of the score. The question arises within the literature as to whether performers’ non-technical, non-sound-producing movements may be communicatively meaningful and convey important structural information to audience members and co-performers. In the light of previous performance research (Vines et al., 2006, Wanderley, 2002, Davidson, 1993), and considering findings within co-speech gestural research and auditory and audio-visual neuroscience, this thesis examines the nature of those movements not directly necessary for the production of sound, and their particular influence on audience perception. Within the current research 3D performance analysis is conducted using the Vicon 12- camera system and Nexus data-processing software. Performance gestures are identified as repeated patterns of motion relating to music structure, which not only express phrasing and structural hierarchy but are consistently and accurately interpreted as such by a perceiving audience. Gestural characteristics are analysed across performers and performance style using two Chopin preludes selected for their diverse yet comparable structures (Opus 28:7 and 6). Effects on perceptual judgements of presentation modes (visual-only, auditory-only, audiovisual, full- and point-light) and viewing conditions are explored. This thesis argues that while performance style is highly idiosyncratic, piano performers reliably generate structural gestures through repeated patterns of upper-body movement. The shapes and locations of phrasing motions are identified particular to the sample of performers investigated. Findings demonstrate that despite the personalised nature of the gestures, performers use increased velocity of movements to emphasise musical structure and that observers accurately and consistently locate phrasing junctures where these patterns and variation in motion magnitude, shape and velocity occur. By viewing performance motions in polar (spherical) rather than cartesian coordinate space it is possible to get mathematically closer to the movement generated by each of the nine performers, revealing distinct patterns of motion relating to phrasing structures, regardless of intended performance style. These patterns are highly individualised both to each performer and performed piece. Instantaneous velocity analysis indicates a right-directed bias of performance motion variation at salient structural features within individual performances. Perceptual analyses demonstrate that audience members are able to accurately and effectively detect phrasing structure from performance motion alone. This ability persists even for degraded point-light performances, where all extraneous environmental information has been removed. The relative contributions of audio, visual and audiovisual judgements demonstrate that the visual component of a performance does positively impact on the over- all accuracy of phrasing judgements, indicating that receivers are most effective in their recognition of structural segmentations when they can both see and hear a performance. Observers appear to make use of a rapid online judgement heuristics, adjusting response processes quickly to adapt and perform accurately across multiple modes of presentation and performance style. In line with existent theories within the literature, it is proposed that this processing ability may be related to cognitive and perceptual interpretation of syntax within gestural communication during social interaction and speech. Findings of this research may have future impact on performance pedagogy, computational analysis and performance research, as well as potentially influencing future investigations of the cognitive aspects of musical and gestural understanding.
Resumo:
Throughout the years, technology has had an undeniable impact on the AVT field. It has revolutionized the way audiovisual content is consumed by allowing audiences to easily access it at any time and on any device. Especially after the introduction of OTT streaming platforms such as Netflix, Amazon Prime Video, Disney+, Apple TV+, and HBO Max, which offer a vast catalog of national and international products, the consumption of audiovisual products has been on a constant rise and, consequently, the demand for localized content too. In turn, the AVT industry resorts to new technologies and practices to handle the ever-growing workload and the faster turnaround times. Due to the numerous implications that it has on the industry, technological advancement can be considered an area of research of particular interest for the AVT studies. However, in the case of dubbing, research and discussion regarding the topic is lagging behind because of the more limited impact that technology has had on the very conservative dubbing industry. Therefore, the aim of the dissertation is to offer an overview of some of the latest technological innovations and practices that have already been implemented (i.e. cloud dubbing and DeepDub technology) or that are still under development and research (i.e. automatic speech recognition and respeaking, machine translation and post-editing, audio-based and visual-based dubbing techniques, text-based editing of talking-head videos, and automatic dubbing), and respectively discuss their reception by the industry professionals, and make assumptions about their future implementation in the dubbing field.
Resumo:
The recording and processing of voice data raises increasing privacy concerns for users and service providers. One way to address these issues is to move processing on the edge device closer to the recording so that potentially identifiable information is not transmitted over the internet. However, this is often not possible due to hardware limitations. An interesting alternative is the development of voice anonymization techniques that remove individual speakers characteristics while preserving linguistic and acoustic information in the data. In this work, a state-of-the-art approach to sequence-to-sequence speech conversion, ini- tially based on x-vectors and bottleneck features for automatic speech recognition, is explored to disentangle the two acoustic information using different pre-trained speech and speakers representation. Furthermore, different strategies for selecting target speech representations are analyzed. Results on public datasets in terms of equal error rate and word error rate show that good privacy is achieved with limited impact on converted speech quality relative to the original method.
Resumo:
Previous studies have shown that multiple ; birth children (MBC) are prone to early phonological ;difficulties and later literacy problems. However, to date, ;there has been no systematic long-term follow-up of MBC with phonological difficulties in the preschool years to determine whether these difficulties predict later literacy problems. In this study, 20 MBC whose early speech and language skills had been previously documented were compared to normative data and 20 singleton controls on tasks assessing phonological ; processing and literacy. The major findings indicated that MBC performed significantly more poorly on some tasks :df phonological processing than singleton controls did. Further, the early phonological skills of MBC (i.e., the number of inappropriate phonological processes used) correlated with poor performance on visual rhyme recognition, word repetition, and phoneme detection tasks 5 years later. There was no significant relationship between early biological factors (birth weight and gestation period) and performance on the phonological processing and literacy-related subtests. These results cl-support the hypothesis that MBC's early speech and language difficulties are not merely a transient phase;of; development, but a real disorder, with consequences for later academic achievement.
Resumo:
Audiometry is the main way with which hearing is evaluated, because it is a universal and standardized test. Speech tests are difficult to standardize due to the variables involved, their performance in the presence of competitive noise is of great importance. Aim: To characterize speech intelligibility in silence and in competitive noise from individuals exposed to electronically amplified music. Material and Method: It was performed with 20 university students who presented normal hearing thresholds. The speech recognition rate (SRR) was performed after fourteen hours of sound rest after the exposure to electronically amplified music and once again after sound rest, being studied in three stages: without competitive noise, in the presence of Babble-type competitive noise, in monotic listening, in signal/ noise ratio of + 5 dB and with the signal/ noise ratio of 5 dB. Results: There was greater damage in the SRR after exposure to the music and with competitive noise, and as the signal/ noise ratio decreases, the performance of individuals in the test also decreased. Conclusion: The inclusion of competitive noise in the speech tests in the audiological routine is important, because it represents the real disadvantage experienced by individuals in daily listening.