914 resultados para assortative matching


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Network Intrusion Detection Systems (NIDS) intercept the traffic at an organization's network periphery to thwart intrusion attempts. Signature-based NIDS compares the intercepted packets against its database of known vulnerabilities and malware signatures to detect such cyber attacks. These signatures are represented using Regular Expressions (REs) and strings. Regular Expressions, because of their higher expressive power, are preferred over simple strings to write these signatures. We present Cascaded Automata Architecture to perform memory efficient Regular Expression pattern matching using existing string matching solutions. The proposed architecture performs two stage Regular Expression pattern matching. We replace the substring and character class components of the Regular Expression with new symbols. We address the challenges involved in this approach. We augment the Word-based Automata, obtained from the re-written Regular Expressions, with counter-based states and length bound transitions to perform Regular Expression pattern matching. We evaluated our architecture on Regular Expressions taken from Snort rulesets. We were able to reduce the number of automata states between 50% to 85%. Additionally, we could reduce the number of transitions by a factor of 3 leading to further reduction in the memory requirements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates a new approach for point matching in multi-sensor satellite images. The feature points are matched using multi-objective optimization (angle criterion and distance condition) based on Genetic Algorithm (GA). This optimization process is more efficient as it considers both the angle criterion and distance condition to incorporate multi-objective switching in the fitness function. This optimization process helps in matching three corresponding corner points detected in the reference and sensed image and thereby using the affine transformation, the sensed image is aligned with the reference image. From the results obtained, the performance of the image registration is evaluated and it is concluded that the proposed approach is efficient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compressive Sampling Matching Pursuit (CoSaMP) is one of the popular greedy methods in the emerging field of Compressed Sensing (CS). In addition to the appealing empirical performance, CoSaMP has also splendid theoretical guarantees for convergence. In this paper, we propose a modification in CoSaMP to adaptively choose the dimension of search space in each iteration, using a threshold based approach. Using Monte Carlo simulations, we show that this modification improves the reconstruction capability of the CoSaMP algorithm in clean as well as noisy measurement cases. From empirical observations, we also propose an optimum value for the threshold to use in applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Orthogonal Matching Pursuit (OMP) is a popular greedy pursuit algorithm widely used for sparse signal recovery from an undersampled measurement system. However, one of the main shortcomings of OMP is its irreversible selection procedure of columns of measurement matrix. i.e., OMP does not allow removal of the columns wrongly estimated in any of the previous iterations. In this paper, we propose a modification in OMP, using the well known Subspace Pursuit (SP), to refine the subspace estimated by OMP at any iteration and hence boost the sparse signal recovery performance of OMP. Using simulations we show that the proposed scheme improves the performance of OMP in clean and noisy measurement cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the grid mismatch problem for a single snapshot direction of arrival estimation problem is studied. We derive a Bayesian Cramer-Rao bound for the grid mismatch problem with the errors in variables model and propose a block sparse estimator for grid matching and sparse recovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compressive Sensing theory combines the signal sampling and compression for sparse signals resulting in reduction in sampling rate and computational complexity of the measurement system. In recent years, many recovery algorithms were proposed to reconstruct the signal efficiently. Look Ahead OMP (LAOMP) is a recently proposed method which uses a look ahead strategy and performs significantly better than other greedy methods. In this paper, we propose a modification to the LAOMP algorithm to choose the look ahead parameter L adaptively, thus reducing the complexity of the algorithm, without compromising on the performance. The performance of the algorithm is evaluated through Monte Carlo simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For compressive sensing, we endeavor to improve the atom selection strategy of the existing orthogonal matching pursuit (OMP) algorithm. To achieve a better estimate of the underlying support set progressively through iterations, we use a least squares solution based atom selection method. From a set of promising atoms, the choice of an atom is performed through a new method that uses orthogonal projection along-with a standard matched filter. Through experimental evaluations, the effect of projection based atom selection strategy is shown to provide a significant improvement for the support set recovery performance, in turn, the compressive sensing recovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address the task of mapping a given textual domain model (e.g., an industry-standard reference model) for a given domain (e.g., ERP), with the source code of an independently developed application in the same domain. This has applications in improving the understandability of an existing application, migrating it to a more flexible architecture, or integrating it with other related applications. We use the vector-space model to abstractly represent domain model elements as well as source-code artifacts. The key novelty in our approach is to leverage the relationships between source-code artifacts in a principled way to improve the mapping process. We describe experiments wherein we apply our approach to the task of matching two real, open-source applications to corresponding industry-standard domain models. We demonstrate the overall usefulness of our approach, as well as the role of our propagation techniques in improving the precision and recall of the mapping task.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates a novel approach for point matching of multi-sensor satellite imagery. The feature (corner) points extracted using an improved version of the Harris Corner Detector (HCD) is matched using multi-objective optimization based on a Genetic Algorithm (GA). An objective switching approach to optimization that incorporates an angle criterion, distance condition and point matching condition in the multi-objective fitness function is applied to match corresponding corner-points between the reference image and the sensed image. The matched points obtained in this way are used to align the sensed image with a reference image by applying an affine transformation. From the results obtained, the performance of the image registration is evaluated and compared with existing methods, namely Nearest Neighbor-Random SAmple Consensus (NN-Ran-SAC) and multi-objective Discrete Particle Swarm Optimization (DPSO). From the performed experiments it can be concluded that the proposed approach is an accurate method for registration of multi-sensor satellite imagery. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given a point set P and a class C of geometric objects, G(C)(P) is a geometric graph with vertex set P such that any two vertices p and q are adjacent if and only if there is some C is an element of C containing both p and q but no other points from P. We study G(del)(P) graphs where del is the class of downward equilateral triangles (i.e., equilateral triangles with one of their sides parallel to the x-axis and the corner opposite to this side below that side). For point sets in general position, these graphs have been shown to be equivalent to half-Theta(6) graphs and TD-Delaunay graphs. The main result in our paper is that for point sets P in general position, G(del)(P) always contains a matching of size at least vertical bar P vertical bar-1/3] and this bound is tight. We also give some structural properties of G(star)(P) graphs, where is the class which contains both upward and downward equilateral triangles. We show that for point sets in general position, the block cut point graph of G(star)(P) is simply a path. Through the equivalence of G(star)(P) graphs with Theta(6) graphs, we also derive that any Theta(6) graph can have at most 5n-11 edges, for point sets in general position. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Developing countries constantly face the challenge of reliably matching electricity supply to increasing consumer demand. The traditional policy decisions of increasing supply and reducing demand centrally, by building new power plants and/or load shedding, have been insufficient. Locally installed microgrids along with consumer demand response can be suitable decentralized options to augment the centralized grid based systems and plug the demand-supply gap. The objectives of this paper are to: (1) develop a framework to identify the appropriate decentralized energy options for demand supply matching within a community, and, (2) determine which of these options can suitably plug the existing demand-supply gap at varying levels of grid unavailability. A scenario analysis framework is developed to identify and assess the impact of different decentralized energy options at a community level and demonstrated for a typical urban residential community Vijayanagar, Bangalore in India. A combination of LPG based CHP microgrid and proactive demand response by the community is the appropriate option that enables the Vijayanagar community to meet its energy needs 24/7 in a reliable, cost-effective manner. The paper concludes with an enumeration of the barriers and feasible strategies for the implementation of community microgrids in India based on stakeholder inputs. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compressed Sensing (CS) is an elegant technique to acquire signals and reconstruct them efficiently by solving a system of under-determined linear equations. The excitement in this field stems from the fact that we can sample at a rate way below the Nyquist rate and still reconstruct the signal provided some conditions are met. Some of the popular greedy reconstruction algorithms are the Orthogonal Matching Pursuit (OMP), the Subspace Pursuit (SP) and the Look Ahead Orthogonal Matching Pursuit (LAOMP). The LAOMP performs better than the OMP. However, when compared to the SP and the OMP, the computational complexity of LAOMP is higher. We introduce a modified version of the LAOMP termed as Reduced Look Ahead Orthogonal Matching Pursuit (Reduced LAOMP). Reduced LAOMP uses prior information from the results of the OMP and the SP in the quest to speedup the look ahead strategy in the LAOMP. Monte Carlo simulations of this algorithm deliver promising results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we study the well-known r-DIMENSIONAL k-MATCHING ((r, k)-DM), and r-SET k-PACKING ((r, k)-SP) problems. Given a universe U := U-1 ... U-r and an r-uniform family F subset of U-1 x ... x U-r, the (r, k)-DM problem asks if F admits a collection of k mutually disjoint sets. Given a universe U and an r-uniform family F subset of 2(U), the (r, k)-SP problem asks if F admits a collection of k mutually disjoint sets. We employ techniques based on dynamic programming and representative families. This leads to a deterministic algorithm with running time O(2.851((r-1)k) .vertical bar F vertical bar. n log(2)n . logW) for the weighted version of (r, k)-DM, where W is the maximum weight in the input, and a deterministic algorithm with running time O(2.851((r-0.5501)k).vertical bar F vertical bar.n log(2) n . logW) for the weighted version of (r, k)-SP. Thus, we significantly improve the previous best known deterministic running times for (r, k)-DM and (r, k)-SP and the previous best known running times for their weighted versions. We rely on structural properties of (r, k)-DM and (r, k)-SP to develop algorithms that are faster than those that can be obtained by a standard use of representative sets. Incorporating the principles of iterative expansion, we obtain a better algorithm for (3, k)-DM, running in time O(2.004(3k).vertical bar F vertical bar . n log(2)n). We believe that this algorithm demonstrates an interesting application of representative families in conjunction with more traditional techniques. Furthermore, we present kernels of size O(e(r)r(k-1)(r) logW) for the weighted versions of (r, k)-DM and (r, k)-SP, improving the previous best known kernels of size O(r!r(k-1)(r) logW) for these problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cross domain and cross-modal matching has many applications in the field of computer vision and pattern recognition. A few examples are heterogeneous face recognition, cross view action recognition, etc. This is a very challenging task since the data in two domains can differ significantly. In this work, we propose a coupled dictionary and transformation learning approach that models the relationship between the data in both domains. The approach learns a pair of transformation matrices that map the data in the two domains in such a manner that they share common sparse representations with respect to their own dictionaries in the transformed space. The dictionaries for the two domains are learnt in a coupled manner with an additional discriminative term to ensure improved recognition performance. The dictionaries and the transformation matrices are jointly updated in an iterative manner. The applicability of the proposed approach is illustrated by evaluating its performance on different challenging tasks: face recognition across pose, illumination and resolution, heterogeneous face recognition and cross view action recognition. Extensive experiments on five datasets namely, CMU-PIE, Multi-PIE, ChokePoint, HFB and IXMAS datasets and comparisons with several state-of-the-art approaches show the effectiveness of the proposed approach. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cross domain and cross-modal matching has many applications in the field of computer vision and pattern recognition. A few examples are heterogeneous face recognition, cross view action recognition, etc. This is a very challenging task since the data in two domains can differ significantly. In this work, we propose a coupled dictionary and transformation learning approach that models the relationship between the data in both domains. The approach learns a pair of transformation matrices that map the data in the two domains in such a manner that they share common sparse representations with respect to their own dictionaries in the transformed space. The dictionaries for the two domains are learnt in a coupled manner with an additional discriminative term to ensure improved recognition performance. The dictionaries and the transformation matrices are jointly updated in an iterative manner. The applicability of the proposed approach is illustrated by evaluating its performance on different challenging tasks: face recognition across pose, illumination and resolution, heterogeneous face recognition and cross view action recognition. Extensive experiments on five datasets namely, CMU-PIE, Multi-PIE, ChokePoint, HFB and IXMAS datasets and comparisons with several state-of-the-art approaches show the effectiveness of the proposed approach. (C) 2015 Elsevier B.V. All rights reserved.