937 resultados para arritmia ventricular


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Application of intermedin/adrenomedullin-2 (IMD/AM-2) protects cultured human cardiac vascular cells and fibroblasts from oxidative stress and simulated ischaemia-reoxygenation injury (I-R), predominantly via adrenomedullin AM1 receptor involvement; similar protection had not been investigated previously in human cardiomyocytes (HCM). Expression of IMD, AM and their receptor components was studied in HCM. Receptor subtype involvement in protection by exogenous IMD against injury by simulated I-R was investigated using receptor component-specific siRNAs. Direct protection by endogenous IMD against HCM injury, both as an autocrine factor produced in HCM themselves and as a paracrine factor released from HCMEC co-cultured with HCM, was investigated using peptide-specific siRNA for IMD. IMD, AM and their receptor components (CLR, RAMPs1-3) were expressed in HCM. IMD 1 nmol L−1, applied either throughout ischaemia (3 h) and re-oxygenation (1 h) or during re-oxygenation (1 h) alone, attenuated HCM injury (P < 0.05); cell viabilities were 59% and 61% respectively vs. 39% in absence of IMD. Cytoskeletal disruption, protein carbonyl formation and caspase activity followed similar patterns. Pre-treatment (4 days) of HCM with CLR and RAMP2 siRNAs attenuated (P < 0.05) protection by exogenous IMD. Pre-treatment of HCMEC with IMD (and AM) siRNA augmented (P < 0.05) I-R injury: cell viabilities were 22% (and 32%) vs. 39% untreated HCMEC. Pre-treatment of HCM with IMD (and AM) siRNA did not augment HCM injury: cell viabilities were 37% (and 39%) vs. 39% untreated HCM. Co-culture with HCMEC conferred protection from injury on HCM; such protection was attenuated when HCMEC were pre-treated with IMD (but not AM) siRNA before co-culture. Although IMD is present in HCM, IMD derived from HCMEC and acting in a paracrine manner, predominantly via AM1 receptors, makes a marked contribution to cardiomyocyte protection by the endogenous peptide against acute I-R injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Left ventricular reverse remodeling (LVRR), defined as reduction of end-diastolic and end-systolic dimensions and improvement of ejection fraction, is associated with the prognostic implications of cardiac resynchronization therapy (CRT). The time course of LVRR remains poorly characterized. Nevertheless, it has been suggested that it occurs ≤6 months after CRT. OBJECTIVE: To characterize the long-term echocardiographic and clinical evolution of patients with LVRR occurring >6 months after CRT and to identify predictors of a delayed LVRR response. METHODS: A total of 127 consecutive patients after successful CRT implantation were divided into three groups according to LVRR response: Group A, 19 patients (15%) with LVRR after >6 months (late LVRR); Group B, 58 patients (46%) with LVRR before 6 months (early LVRR); and Group C, 50 patients (39%) without LVRR during follow-up (no LVRR). RESULTS: The late LVRR group was older, more often had ischemic etiology and fewer patients were in NYHA class ≤II. Overall, group A presented LVRR between group B and C. This was also the case with the percentage of clinical response (68.4% vs. 94.8% vs. 38.3%, respectively, p<0.001), and hospital readmissions due to decompensated heart failure (31.6% vs. 12.1% vs. 57.1%, respectively, p<0.001). Ischemic etiology (OR 0.044; p=0.013) and NYHA functional class

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Accurate placement of an external ventricular drain (EVD) for the treatment of hydrocephalus is of paramount importance for its functionality and in order to minimize morbidity and complications. The aim of this study was to compare two different drain insertion assistance tools with the traditional free-hand anatomical landmark method, and to measure efficacy, safety and precision. METHODS: Ten cadaver heads were prepared by opening large bone windows centered on Kocher's points on both sides. Nineteen physicians, divided in two groups (trainees and board certified neurosurgeons) performed EVD insertions. The target for the ventricular drain tip was the ipsilateral foramen of Monro. Each participant inserted the external ventricular catheter in three different ways: 1) free-hand by anatomical landmarks, 2) neuronavigation-assisted (NN), and 3) XperCT-guided (XCT). The number of ventricular hits and dangerous trajectories; time to proceed; radiation exposure of patients and physicians; distance of the catheter tip to target and size of deviations projected in the orthogonal plans were measured and compared. RESULTS: Insertion using XCT increased the probability of ventricular puncture from 69.2 to 90.2 % (p = 0.02). Non-assisted placements were significantly less precise (catheter tip to target distance 14.3 ± 7.4 mm versus 9.6 ± 7.2 mm, p = 0.0003). The insertion time to proceed increased from 3.04 ± 2.06 min. to 7.3 ± 3.6 min. (p < 0.001). The X-ray exposure for XCT was 32.23 mSv, but could be reduced to 13.9 mSv if patients were initially imaged in the hybrid-operating suite. No supplementary radiation exposure is needed for NN if patients are imaged according to a navigation protocol initially. CONCLUSION: This ex vivo study demonstrates a significantly improved accuracy and safety using either NN or XCT-assisted methods. Therefore, efforts should be undertaken to implement these new technologies into daily clinical practice. However, the accuracy versus urgency of an EVD placement has to be balanced, as the image-guided insertion technique will implicate a longer preparation time due to a specific image acquisition and trajectory planning.