923 resultados para arabidopsis-thaliana
Resumo:
Ecological interactions between different species are not fixed, but they may depend, at least to some extent, on the particular genotypes involved as well as on the environmental conditions experienced by previous generations. We used a set of natural genotypes of Arabidopsis thaliana, that previously experienced contrasting nutrient and herbivory conditions, to test for the influences of genetic variation and maternal effects on competitive interactions between Arabidopsis and the weedy annuals Anagallis arvensis and Senecio vulgaris. We used activated carbon to discriminate between resource competition and allelopathy components of plant-plant interactions. There was a clear competitive hierarchy: Senecio > Arabidopsis > Anagallis. Although we found no evidence for allelopathic potential of Arabidopsis, our results indicate that both Anagallis and Senecio exerted negative (direct or indirect) allelopathic effects on Arabidopsis. There were significant differences among Arabidopsis genotypes in their competitive effects on both neighbor species, as well as in their response to competition. Maternal environments significantly influenced not only the growth and fitness of Arabidopsis itself, but also its competitive effect on Anagallis. We found, however, no evidence that maternal environments affected the competitive effect on Senecio or overall competitive response of Arabidopsis. Generally, resource competition played a greater role than allelopathy, and genotype effects were more important than maternal effects. Our study demonstrates that ecological interactions, such as plant competition, are complex and multi-layered, and that, in particular, the influence of genetic variation on interactions with other species should not be overlooked.
Resumo:
Thigmomorphogenesis, the characteristic phenotypic changes by which plants react to mechanical stress, is a widespread and probably adaptive type of phenotypic plasticity. However, little is known about its genetic basis and population variation. Here, we examine genetic variation for thigmomorphogenesis within and among natural populations of the model system Arabidopsis thaliana. Offspring from 17 field-collected European populations was subjected to three levels of mechanical stress exerted by wind. Overall, plants were remarkably tolerant to mechanical stress. Even high wind speed did not significantly alter the correlation structure among phenotypic traits. However, wind significantly affected plant growth and phenology, and there was genetic variation for some aspects of plasticity to wind among A. thaliana populations. Our most interesting finding was that phenotypic traits were organized into three distinct and to a large degree statistically independent covariance modules associated with plant size, phenology, and growth form, respectively. These phenotypic modules differed in their responsiveness to wind, in the degree of genetic variability for plasticity, and in the extent to which plasticity affected fitness. It is likely, therefore, that thigmomorphogenesis in this species evolves quasi-independently in different phenotypic modules.
Resumo:
Although slugs and snails play important roles in terrestrial ecosystems and cause considerable damage on a variety of crop plants, knowledge about the mechanisms of plant immunity to molluscs is limited. We found slugs to be natural herbivores of Arabidopsis thaliana and therefore investigated possible resistance mechanisms of this species against several molluscan herbivores. Treating wounded leaves with the mucus residue (‘slime trail’) of the Spanish slug Arion lusitanicus increased wound-induced jasmonate levels, suggesting the presence of defence elicitors in the mucus. Plants deficient in jasmonate biosynthesis and signalling suffered more damage by molluscan herbivores in the laboratory and in the field, demonstrating that JA-mediated defences protect A. thaliana against slugs and snails. Furthermore, experiments using A. thaliana mutants with altered levels of specific glucosinolate classes revealed the importance of aliphatic glucosinolates in defending leaves and reproductive structures against molluscs. The presence in mollusc faeces of known and novel metabolites arising from glutathione conjugation with glucosinolate hydrolysis products suggests that molluscan herbivores actively detoxify glucosinolates. Higher levels of aliphatic glucosinolates were found in plants during the night compared to the day, which correlated well with the nocturnal activity rhythms of slugs and snails. Our data highlight the function of well-known antiherbivore defence pathways in resistance against slugs and snails and suggest an important role for the diurnal regulation of defence metabolites against nocturnal molluscan herbivores.
Resumo:
Plants attacked by herbivores have evolved different strategies that fend off their enemies. Insect eggs deposited on leaves have been shown to inhibit further oviposition through visual or chemical cues. In some plant species, the volatile methyl salicylate (MeSA) repels gravid insects but whether it plays the same role in the model species Arabidopsis thaliana is currently unknown. Here we showed that Pieris brassicae butterflies laid fewer eggs on Arabidopsis plants that were next to a MeSA dispenser or on plants with constitutively high MeSA emission than on control plants. Surprisingly, the MeSA biosynthesis mutant bsmt1-1 treated with egg extract was still repellent to butterflies when compared to untreated bsmt1-1. Moreover, the expression of BSMT1 was not enhanced by egg extract treatment but was induced by herbivory. Altogether, these results provide evidence that the deterring activity of eggs on gravid butterflies is independent of MeSA emission in Arabidopsis, and that MeSA might rather serve as a deterrent in plants challenged by feeding larvae.
Resumo:
With the aim of analysing the relative importance of sugar supply and nitrogen nutrition for the regulation of sulphate assimilation, the regulation of adenosine 5′‐phosphosulphate reductase (APR), a key enzyme of sulphate reduction in plants, was studied. Glucose feeding experiments with Arabidopsis thaliana cultivated with and without a nitrogen source were performed. After a 38 h dark period, APR mRNA, protein, and enzymatic activity levels decreased dramatically in roots. The addition of 0.5% (w/v) glucose to the culture medium resulted in an increase of APR levels in roots (mRNA, protein and activity), comparable to those of plants kept under normal light conditions. Treatment of roots with D‐sorbitol or D‐mannitol did not increase APR activity, indicating that osmotic stress was not involved in APR regulation. The addition of O‐acetyl‐L‐serine (OAS) also quickly and transiently increased APR levels (mRNA, protein, and activity). Feeding plants with a combination of glucose and OAS resulted in a more than additive induction of APR activity. Contrary to nitrate reductase, APR was also increased by glucose in N‐deficient plants, indicating that this effect was independent of nitrate assimilation. [35S]‐sulphate feeding experiments showed that the addition of glucose to dark‐treated roots resulted in an increased incorporation of [35S] into thiols and proteins, which corresponded to the increased levels of APR activity. Under N‐deficient conditions, glucose also increased thiol labelling, but did not increase the incorporation of label into proteins. These results demonstrate that (i) exogenously supplied glucose can replace the function of photoassimilates in roots; (ii) APR is subject to co‐ordinated metabolic control by carbon metabolism; (iii) positive sugar signalling overrides negative signalling from nitrate assimilation in APR regulation. Furthermore, signals originating from nitrogen and carbon metabolism regulate APR synergistically.
Resumo:
The effect of externally applied l-cysteine and glutathione (GSH) on ATP sulphurylase and adenosine 5′-phosphosulphate reductase (APR), two key enzymes of assimilatory sulphate reduction, was examined in Arabidopsis thaliana root cultures. Addition of increasing l-cysteine to the nutrient solution increased internal cysteine, γ-glutamylcysteine and GSH concentrations, and decreased APR mRNA, protein and extractable activity. An effect on APR could already be detected at 0.2 mm l-cysteine, whereas ATP sulphurylase was significantly affected only at 2 mm l-cysteine. APR mRNA, protein and activity were also decreased by GSH at 0.2 mm and higher concentrations. In the presence of l-buthionine-S, R-sulphoximine (BSO), an inhibitor of GSH synthesis, 0.2 mm l-cysteine had no effect on APR activity, indicating that GSH formed from cysteine was the regulating substance. Simultaneous addition of BSO and 0.5 mm GSH to the culture medium decreased APR mRNA, enzyme protein and activity. ATP sulphurylase activity was not affected by this treatment. Tracer experiments using 35SO42– in the presence of 0.5 mm l-cysteine or GSH showed that both thiols decreased sulphate uptake, APR activity and the flux of label into cysteine, GSH and protein, but had no effect on the activity of all other enzymes of assimilatory sulphate reduction and serine acetyltransferase. These results are consistent with the hypothesis that thiols regulate the flux through sulphate assimilation at the uptake and the APR step. Analysis of radioactive labelling indicates that the flux control coefficient of APR is more than 0.5 for the intracellular pathway of sulphate assimilation. This analysis also shows that the uptake of external sulphate is inhibited by GSH to a greater extent than the flux through the pathway, and that the flux control coefficient of APR for the pathway, including the transport step, is proportionately less, with a significant share of the control exerted by the transport step.
Resumo:
Adenosine 5′-phosphosulphate reductase (APR) is considered to be a key enzyme of sulphate assimilation in higher plants. We analysed the diurnal fluctuations of total APR activity and protein accumulation together with the mRNA levels of three APR isoforms of Arabidopsis thaliana. The APR activity reached maximum values 4 h after light onset in both shoots and roots; the minimum activity was detected at the beginning of the night. During prolonged light, the activity remained stable and low in shoots, but followed the normal rhythm in roots. On the other hand, the activity decreased rapidly to undetectable levels within 24 h of prolonged darkness both in shoots and roots. Subsequent re-illumination restored the activity to 50% in shoots and to 20% in roots within 8 h. The mRNA levels of all three APR isoforms showed a diurnal rhythm, with a maximum at 2 h after light onset. The variation of APR2 mRNA was more prominent compared to APR1 and APR3. 35SO42– feeding experiments showed that the incorporation of 35S into reduced sulphur compounds in vivo was significantly higher in light than in the dark. A strong increase of mRNA and protein accumulation as well as enzyme activity during the last 4 h of the dark period was observed, implying that light was not the only factor involved in APR regulation. Indeed, addition of 0.5% sucrose to the nutrient solution after 38 h of darkness led to a sevenfold increase of root APR activity over 6 h. We therefore conclude that changes in sugar concentrations are also involved in APR regulation.
Resumo:
Plant cell walls largely consist of matrix polysaccharides that are linked to cellulose microfibrils. Xyloglucan, the primary hemicellulose of the cell wall matrix, consists of a repeating glucose tetramer structure with xylose residues attached to the first three units ('XXXG'). In Arabidopsis thaliana, the core XXXG structure is further modified by enzymatic addition of galactose and fucose residues to the xylose side chains to produce XLXG, XXLG, XLLG and XLFG structures. GT14 is a putative glycosyltransferase in the GT47 gene family. Initial predictions of GT14's hydrophobic regions, based on its translated amino acid sequence, are almost identical to its Arabidopsis homolog MUR3, which is a xyloglucan galactosyltransferase targeted to the Golgi membrane. This suggests that, like MUR3, GT14 possesses a transmembrane domain and that it is targeted to the Golgi. The monosaccharide composition of leaves from T-DNA insertion knockouts of GT14 was analyzed by gas-liquid chromatography. The gt14 plants were found to have lower fucose and higher mannose contents than wild type plants. Analysis of cell wall and soluble fractions from gt14 and wild type plants revealed that most of the deficiency in fucose was accounted for in the cell wall, supporting the idea that GT14's target is xyloglucan. Finally, gt14 and wild type plants were transformed with GT14 for complementation and overexpression analysis. The majority of transformed plants did not show significant changes with regard to monosaccharide composition. This may be because the plants were in the T1 generation and, thus, hemizygous. Analysis of homozygous plants in the T2 generation may reveal noticeable changes. Further studies on the xyloglucan composition of gt14 plants are necessary to put the observed reduction in cell wall fucose into a meaningful context.
Resumo:
Seed dormancy prevents seeds from germinating under environmental conditions unfavourable for plant growth and development and constitutes an evolutionary advantage. Dry storage, also known as after-ripening, gradually decreases seed dormancy by mechanisms not well understood. An Arabidopsis thaliana DOF transcription factor gene (DOF6) affecting seed germination has been characterized. The transcript levels of this gene accumulate in dry seeds and decay gradually during after-ripening and also upon seed imbibition. While constitutive over-expression of DOF6 produced aberrant growth and sterility in the plant, its over-expression induced upon seed imbibition triggered delayed germination, abscisic acid (ABA)-hypersensitive phenotypes and increased expression of the ABA biosynthetic gene ABA1 and ABA-related stress genes. Wild-type germination and gene expression were gradually restored during seed after-ripening, despite of DOF6-induced over-expression. DOF6 was found to interact in a yeast two-hybrid system andin planta with TCP14, a previously described positive regulator of seed germination. The expression of ABA1 and ABA-related stress genes was also enhanced in tcp14 knock-out mutants. Taken together, these results indicate that DOF6 negatively affects seed germination and opposes TCP14 function in the regulation of a specific set of ABA-related genes
Resumo:
The endo-β-mannanase (MAN) family is represented in the Arabidopsis genome by eight members, all with canonical signal peptides and only half of them being expressed in germinating seeds. The transcripts of these genes were localized in the radicle and micropylar endosperm (ME) before radicle protrusion and this expression disappears as soon as the endosperm is broken by the emerging radicle tip. However, only three of these MAN genes, AtMAN5, AtMAN7 and especially AtMAN6 influence the germination time (t50) as assessed by the analysis of the corresponding knock-out lines. The data suggest a possible interaction between embryo and ME regarding the role of MAN during the Arabidopsis germination process.
Resumo:
Singlet oxygen is a prominent form of reactive oxygen species in higher plants. It is easily formed from molecular oxygen by triplet–triplet interchange with excited porphyrin species. Evidence has been obtained from studies on the flu mutant of Arabidopsis thaliana of a genetically determined cell death pathway that involves differential changes at the transcriptome level. Here we report on a different cell death pathway that can be deduced from the analysis of oep16 mutants of A. thaliana. Pure lines of four independent OEP16-deficient mutants with different cell death properties were isolated. Two of the mutants overproduced free protochlorophyllide (Pchlide) in the dark because of defects in import of NADPH:Pchlide oxidoreductase A (pPORA) and died after illumination. The other two mutants avoided excess Pchlide accumulation. Using pulse labeling and polysome profiling studies we show that translation is a major site of cell death regulation in flu and oep16 plants. flu plants respond to photooxidative stress triggered by singlet oxygen by reprogramming their translation toward synthesis of key enzymes involved in jasmonic acid synthesis and stress proteins. In contrast, those oep16 mutants that were prone to photooxidative damage were unable to respond in this way. Together, our results show that translation is differentially affected in the flu and oep16 mutants in response to singlet oxygen.
Resumo:
The outer plastid envelope protein OEP16-1 was previously identified as an amino acid-selective channel protein and translocation pore for NADPH:protochlorophyllide oxidoreductase A (PORA). Reverse genetic approaches used to dissect these mutually not exclusive functions of OEP16-1 in planta have led to descriptions of different phenotypes resulting from the presence of several mutant lines in the SALK_024018 seed stock. In addition to the T-DNA insertion in the AtOEP16-1 gene, lines were purified that contain two additional T-DNA insertions and as yet unidentified point mutations. In a first attempt to resolve the genetic basis of four different lines in the SALK_024018 seed stock, we used genetic transformation with the OEP16-1 cDNA and segregation analyses after crossing out presumed point mutations. We show that AtOEP16-1 is involved in PORA precursor import and by virtue of this activity confers photoprotection onto etiolated seedlings during greening
Resumo:
La resistencia de las plantas a los hongos necrótrofos como Plectosphaerella cucumerina es genéticamente compleja y depende de la activación coordinada de distintas rutas de señalización (Llorente et al, 2005; Sanchez-Vallet et al, 2010). Entre éstas se encuentran las mediadas por la proteína G heterotrimérica, un complejo formado por tres subunidades (Gα, Gβ y Gγ) que regula tanto la respuesta de inmunidad a diferentes patógenos como distintos procesos de desarrollo (Temple and Jones, 2007). En esta Tesis hemos demostrado que, en Arabidopsis, el monómero funcional formado por las subunidades Gβ y Gγ1/Gγ2 es el responsable de la regulación de la respuesta de defensa, ya que mutantes nulos en estas subunidades (agb1 y agg1 agg2) presentan una alta susceptibilidad al hongo P. cucumerina. Además, hemos identificado varios aminoácidos (Q102, T188 y R235) de la proteína AGB1 esenciales en la interacción con los efectores correspondientes para la regulación de la respuesta inmune (Jiang et al, enviado). Para determinar las bases moleculares de la resistencia mediada por la proteína G heterotrimérica, llevamos a cabo un análisis transcriptómico comparativo entre los genotipos agb1 y Col-0, el cual reveló que la resistencia mediada por AGB1 no depende de rutas defensivas implicadas en la resistencia a hongos necrotrofos, como las mediadas por el ácido salicílico (SA), etileno (ET), jasmónico (JA) o ácido abscísico (ABA), o la ruta de biosíntesis de metabolitos derivados del triptófano. Este estudio mostró que un número significativo de los genes desregulados en respuesta a P. cucumerina en el genotipo agb1 respecto a las plantas silvestres codificaban proteínas con funciones relacionadas con la pared celular. La evaluación de la composición y estructura de la pared de los mutantes de las subunidades de la proteína G heterotrimérica reveló que los genotipos agb1 y agg1 agg2 presentaban alteraciones similares diferentes de las observadas en plantas silvestres Col-0, como una reducción significativa en el contenido de xilosa en la pared. Estos datos sugieren que la proteína G heterotrimérica puede modular la composición/estructura de la pared celular y contribuir, de esta manera, en la regulación de la respuesta inmune (Delgado- Cerezo et al, 2011). La caracterización del interactoma de la proteína G heterotrimérica corroboró la relevancia funcional que presenta en la regulación de la pared celular, ya que un número significativo de las interacciones identificadas estaban comprendidas por proteínas relacionadas directa o indirectamente con la biogénesis y remodelación de la pared celular (Klopffleisch et al, 2011). El papel en inmunidad de algunos de estos potenciales efectores ha sido validado mediante el análisis de la resistencia a P. cucumerina de los mutantes de pérdida de función correspondientes. Con el objetivo de caracterizar las rutas de señalización mediadas por AGB1 e identificar efectores implicados en esta señalización, llevamos a cabo una búsqueda de mutantes supresores de la susceptibilidad de agb1 a P. cucumerina, identificándose varios mutantes sgb (supressor of Gbeta). En esta Tesis hemos caracterizado en detalle el mutante sgb10, que presenta una activación constitutiva de las rutas de señalización mediadas por SA y JA+ET y suprime el fenotipo de susceptibilidad de agb1. SGB10 y AGB1 forman parte de rutas independientes en la regulación de la respuesta inmune, mientras que interaccionan de forma compleja en el control de determinados procesos de desarrollo. La mutación sgb10 ha sido cartografiada entre los genes At3g55010 y At3g56408, que incluye una región con 160 genes. ABSTRACT Plant resistance to necrotrophic fungi Plectosphaerella cucumerina is genetically complex and depends on the interplay of different signalling pathways (Llorente et al, 2005; Sanchez-Vallet et al, 2010). Among others, the heterotrimeric G protein complex has a relevant role. The G protein that is formed by three subunits (Gα, Gβ and Gγ) is a pleiotropic regulator of immune responses to different types of pathogens and developmental issues (Temple and Jones, 2007). Throughout the Thesis, we have demonstrated that Arabidopsis’ functional monomer formed by the Gβ and Gγ1/Gγ2 subunits is a key regulator of defense response, as null mutants (agb1 and agg1 agg2) are equally hypersusceptible to P. cucumerina infection. In addition we have identified several AGB1 aminoacids (Q102, T188 y R235) essentials to interact with specific effectors during the regulation of immune response (Jiang et al, sent).To determine the molecular basis of heterotrimeric G protein mediated resistance we have performed a microarray analysis with agb1-1 and wild type Col-0 plants before and after P. cucumerina challenge. A deep and exhaustive comparative transcriptomical analysis of these plants revealed that AGB1 mediated resistance does not rely on salicilic acid (SA), ethylene (ET), jasmonates (JA), abscisic acid (ABA) or triptophan derived metabolites biosynthesis. However the analysis revealed that a significant number of cell wall related genes are misregulated in the agb1 mutant after pathogen challenge when compared to wild-type plants. The analysis of cell wall composition and structure showed similar cell wall alterations between agb1 and agg1 agg2 mutants that are different from those of wild-type plants, so far the mutants present a significant reduction in xylose levels. All these results suggest that heterotrimeric G protein may regulate immune response through modifications in the cell wall composition/structure (Delgado-Cerezo et al, 2011). The characterization of Heterotrimeric G protein interactome revealed highly connected interactions between the G-protein core and proteins involved in cell wall composition or structure (Klopffleisch et al, 2011). To test the role in immunity of several effectors identified above, we have performed resistance analysis of corresponding null mutants against P. cucumerina. In order to characterize AGB1 mediated signalling pathway and identify additional effectors involved in AGB1-mediated immune response against P. cucumerina, we have performed a screening to isolate mutants with suppression of agb1 phenotype. One of the mutants, named sgb10, has been characterized during the Thesis. The mutant shows constitutive expression of SA, JA+ET-mediated defense signaling pathways to suppres agb1 hypersusceptibility. SGB10 and AGB1 proteins seem to be part of independent pathways in immunity, however its function during development remains unclear. At present, we have mapped the sgb10 mutation between At3g55010 and At3g56408 genes. This region contains 160 genes.
Resumo:
An HPLC/GC–MS/MS technique (high-pressure liquid chromatography in combination with gas chromatography–tandem mass spectrometry) has been worked out to analyze indole-3-acetamide (IAM) with very high sensitivity, using isotopically labelled IAM as an internal standard. Using this technique, the occurrence of IAM in sterile-grown Arabidopsis thaliana (L.) Heynh. was demonstrated unequivocally. In comparison, plants grown under non-sterile conditions in soil in a greenhouse showed approximately 50% higher average levels of IAM, but the differences were not statistically significant. Thus, microbial contributions to the IAM extracted from the tissue are likely to be minor. Levels of IAM in sterile-grown seedlings were highest in imbibed seeds and then sharply declined during the first 24 h of germination and further during early seedling development to remain below 20–30 pmol g–1 fresh weight throughout the rosette stage. The decline in indole-3-aetic acid (IAA) levels during germination was paralleled by a similar decline in IAM levels. Recombinant nitrilase isoforms 1, 2 and 3, known to synthesize IAA from indole-3-acetonitrile, were shown to produce significant amounts of IAM in vitro as a second end product of the reaction besides IAA. NIT2 was earlier shown to be highly expressed in developing and in mature A. thaliana embryos, and NIT3 is the dominantly active gene in the hypocotyl and the cotyledons of young, germinating seedlings. Collectively, these data suggest that the elevated levels of IAM in seeds and germinating seedlings result from nitrilase action on indole-3-acetonitrile, a metabolite produced in the plants presumably from glucobrassicin turnover.
Resumo:
Acylamidohydrolases from higher plants have not been characterized or cloned so far. AtAMI1 is the first member of this enzyme family from a higher plant and was identified in the genome of Arabidopsis thaliana based on sequence homology with the catalytic-domain sequence of bacterial acylamidohydrolases, particularly those that exhibit indole-3-acetamide amidohydrolase activity. AtAMI1 polypeptide and mRNA are present in leaf tissues, as shown by immunoblotting and RT-PCR, respectively. AtAMI1 was expressed from its cDNA in enzymatically active form and exhibits substrate specificity for indole-3-acetamide, but also some activity against l-asparagine. The recombinant enzyme was characterized further. The results show that higher plants have acylamidohydrolases with properties similar to the enzymes of certain plant-associated bacteria such as Agrobacterium-, Pseudomonas- and Rhodococcus-species, in which these enzymes serve to synthesize the plant growth hormone, indole-3-acetic acid, utilized by the bacteria to colonize their host plants. As indole-3-acetamide is a native metabolite in Arabidopsis thaliana, it can no longer be ruled out that one pathway for the biosynthesis of indole-3-acetic acid involves indole-3-acetamide-hydrolysis by AtAMI1.