993 resultados para antifungal glycoalkaloids
Resumo:
BACKGROUND: Patients undergoing emergency gastrointestinal surgery for intra-abdominal infection are at risk of invasive candidiasis (IC) and candidates for preemptive antifungal therapy. METHODS: This exploratory, randomized, double-blind, placebo-controlled trial assessed a preemptive antifungal approach with micafungin (100 mg/d) in intensive care unit patients requiring surgery for intra-abdominal infection. Coprimary efficacy variables were the incidence of IC and the time from baseline to first IC in the full analysis set; an independent data review board confirmed IC. An exploratory biomarker analysis was performed using logistic regression. RESULTS: The full analysis set comprised 124 placebo- and 117 micafungin-treated patients. The incidence of IC was 8.9% for placebo and 11.1% for micafungin (difference, 2.24%; [95% confidence interval, -5.52 to 10.20]). There was no difference between the arms in median time to IC. The estimated odds ratio showed that patients with a positive (1,3)-β-d-glucan (ßDG) result were 3.66 (95% confidence interval, 1.01-13.29) times more likely to have confirmed IC than those with a negative result. CONCLUSIONS: This study was unable to provide evidence that preemptive administration of an echinocandin was effective in preventing IC in high-risk surgical intensive care unit patients with intra-abdominal infections. This may have been because the drug was administered too late to prevent IC coupled with an overall low number of IC events. It does provide some support for using ßDG to identify patients at high risk of IC. CLINICAL TRIALS REGISTRATION: NCT01122368.
Resumo:
Invasive mold infections are life-threatening diseases for which appropriate antifungal therapy is crucial. Their epidemiology is evolving, with the emergence of triazole-resistant Aspergillus spp. and multidrug-resistant non-Aspergillus molds. Despite the lack of interpretive criteria, antifungal susceptibility testing of molds may be useful in guiding antifungal therapy. The standard broth microdilution method (BMD) is demanding and requires expertise. We assessed the performance of a commercialized gradient diffusion method (Etest method) as an alternative to BMD. The MICs or minimal effective concentrations (MECs) of amphotericin B, voriconazole, posaconazole, caspofungin, and micafungin were assessed for 290 clinical isolates of the most representative pathogenic molds (154 Aspergillus and 136 non-Aspergillus isolates) with the BMD and Etest methods. Essential agreements (EAs) within ±2 dilutions of ≥90% between the two methods were considered acceptable. EAs for amphotericin B and voriconazole were >90% for most potentially susceptible species. For posaconazole, the correlation was acceptable for Mucoromycotina but Etest MIC values were consistently lower for Aspergillus spp. (EAs of <90%). Excellent EAs were found for echinocandins with highly susceptible (MECs of <0.015 μg/ml) or intrinsically resistant (MECs of >16 μg/ml) strains. However, MEC determinations lacked consistency between methods for strains exhibiting mid-range MECs for echinocandins. We concluded that the Etest method is an appropriate alternative to BMD for antifungal susceptibility testing of molds under specific circumstances, including testing with amphotericin B or triazoles for non-Aspergillus molds (Mucoromycotina and Fusarium spp.). Additional study of molecularly characterized triazole-resistant Aspergillus isolates is required to confirm the ability of the Etest method to detect voriconazole and posaconazole resistance among Aspergillus spp.
Resumo:
OBJECTIVES: The treatment of Candida implant-associated infections remains challenging. We investigated the antifungal activity against planktonic and biofilm Candida albicans in a foreign-body infection model. METHODS: Teflon cages were subcutaneously implanted in guinea pigs, infected with C. albicans (ATCC 90028). Animals were treated intraperitoneally 12 h after infection for 4 days once daily with saline, fluconazole (16 mg/kg), amphotericin B (2.5 mg/kg), caspofungin (2.5 mg/kg) or anidulafungin (20 mg/kg). Planktonic Candida was quantified, the clearance rate and cure rate determined. RESULTS: In untreated animals, planktonic Candida was cleared from cage fluid in 25% (infected with 4.5 × 10(3) CFU/cage), 8% (infected with 4.8 × 10(4) CFU/cage) and 0% (infected with 6.2 × 10(5) CFU/cage). Candida biofilm persisted on all explanted cages. Compared to untreated controls, caspofungin reduced the number of planktonic C. albicans to 0.22 and 0.0 CFU/ml, respectively, and anidulafungin to 0.11 and 0.13 CFU/ml, respectively. Fluconazole cured 2/12 cages (17%), amphotericin B and anidulafungin 1/12 cages (8%) and caspofungin 3/12 cages (25%). CONCLUSION: Echinocandins showed superior activity against planktonic C. albicans. Caspofungin showed the highest cure rate of C. albicans biofilm. However, no antifungal exceeded 25% cure rate, demonstrating the difficulty of eradicating Candida biofilms from implants.
Resumo:
The composition of essential oils from leaves, stems and fruits of Piper aduncum, P. arboreum and P. tuberculatum was examined by means of GC-MS and antifungal assay. There was a predominance of monoterpenes in P. aduncum and P. tuberculatum and of sesquiterpenes in P. arboreum. P. aduncum showed the richest essential oil composition, including linalool. The essential oils from fruits of P. aduncum and P. tuberculatum showed the highest antifungal activity with the MIC of 10 µg as determined against Cladosporium cladosporioides and C. sphaerospermum, respectively. This is the first report of the composition of essential oils from P. tuberculatum.
Resumo:
Bioguided fractionation of the extracts from leaves of Piper mollicomum and Piper lhotzkyanum against the fungi Cladosporium cladosporioides and C. sphaerospermum afforded seven bioactive compounds, four being chromenes: methyl 2,2-dimethyl-2H-chromene-6-carboxylate, methyl 8-hydroxy-2,2-dimethyl-2H-chromene-6-carboxylate, 2-methyl-2-[4'-methyl-3'-pentenyl]-2H-1-benzopyran-6-carboxylic acid, 2,2-dimethyl-2H-chromene-6-carboxylic acid, one a dihydrochalcone: 2',6'-dihydroxy-4'-methoxydihydrochalcone, and two flavanones: 7-methoxy-5,4'-dihydroxy-flavanone and 7,4'-dimethoxy-5-hydroxy-flavanone. The structures of the bioactive isolated derivatives were elucidated by interpretation of their NMR data [¹H and 13C (BBD, DEPT 135º)], and mass spectral data as well as by comparison with data described in the literature.
Resumo:
Amphotericin B (AB) is the standard drug for invasive fungal infection therapy. It has a broad spectrum of activity and it is the best antifungal available against most yeasts and molds. Its therapeutic use, however, is limited by significant side effects, leading to a low therapeutic index when it is used as the traditional formulation (Fungizone®). Due to self-association, AB can form pores in cholesterol-containing membranes. We propose a triglyceride-rich nanoemulsion as a delivery system for AB in low levels of aggregation to reduce the toxicity against host cells.
Resumo:
The aims of the present study were to evaluate the antifungal properties of Colombian propolis extracts against Colletotrichum gloeosporioides and Botryodiplodia theobromae, and to isolate and identify the main constituents from the active extracts. Therefore, propolis samples were thoroughly extracted with n-hexane/methanol (EPEM), dichloromethane, ethyl acetate, and methanol. Experimental results indicated that mycelial growth of all selected microorganisms was reduced in culture media containing EPEM and dichloromethane fractions. Furthermore, through antifungal bioassay-guided fractionation, three known labdane-type diterpenes: isocupressic acid (1), (+)-agathadiol (2) and epi-13-torulosol (3) were isolated as the main constituents from the active fractions.
Resumo:
The new iridoid glucoside 10-O-vanilloyl-geniposidic acid has been isolated from the aerial parts of Alibertia myrciifolia along with hydroxyhopanone, 3α,22-dihydroxyhopane, ursolic acid, luteolin-3´,4´-dimethyl ether, caffeic acid and geniposidic acid. The structures of the isolated compounds were determined by means of mass spectrometry and nuclear magnetic resonance spectral analyses. The antifungal activities of the iridoids 10-O-vanilloyl-geniposidic acid and geniposidic acid were evaluated against the phytopathogenic fungi strains Colletotrichum gloeosporioides, Fusarium solani and Aspergillus niger.
Resumo:
Here we describe the total syntheses and characterization by elemental analyses, infrared and NMR spectroscopy of three new compounds analogous to avenaciolide, a bis-γ-lactone isolated from Aspergillus avenaceus that possesses antifungal activity, where the octyl group of the natural product was replaced by aromatic groups containing chlorine and fluorine atoms. The effects of the avenaciolide, the novel compounds and their synthetic precursors on mycelia development and conidia germination of Colletotrichum gloeosporioides and Fusarium solani were evaluated in vitro. The title compounds were almost as active as avenaciolide. The absolute structures of the chlorinated analogs were determined by X-ray diffraction analysis.
Resumo:
Four new compounds with the general formula [Fe(phen)3][Zn(RSO2N=CS2)2], where phen = 1,10-phenanthroline, R = 4-FC6H4 (1), 4-ClC6H4 (2), 4-BrC6H4 (3) and 4-IC6H4 (4), respectively, were obtained by the reaction of the appropriate potassium N-R-sulfonyldithiocarbimate (RSO2N=CS2K2) and tris(1,10-phenanthroline)iron(II) sulfate, with zinc(II) acetate dihydrate in dimethylformamide. The elemental analyses and the IR data were consistent with the formation of the expected complexes salts. The ¹H and 13C NMR spectra showed the signals for the cationic iron(II) complex and dithiocarbimate moieties. The molar conductance data were consistent with the 1:1 cation:anion complexes in 1-4. The antifungal activities of the compounds were tested in vitro against Candida albicans, Candida tropicalis and Colletotrichum gloeosporioides.
Resumo:
A series of six new palmitic acid-based neoglycolipids related to Papulacandin D were synthesized in five steps, resulting in good yields, and they were evaluated against Candida spp. All twelve synthetic intermediates were also evaluated. The synthesis involved the initial glycosylation of two phenols (4-hydroxy-3-methoxybenzaldehyde and 3-hydroxybenzaldehyde) via their reaction with peracetylated glucosyl bromide. This was followed by deacetylation with potassium methoxide/metanol solution and the protection of two hydroxyls (C4 and C6 positions) of the saccharide unit as benzilidene acetals (10-11). The next step involved the acylation of the acetal derivatives with palmitic acid, thereby affording a mixture of two isomers mono-acylated at the C2 and C3 positions and a di-acylated product (12-17). After being isolated, each compound was subjected to the removal of the acetal protecting group to yield the papulacandin D analogues 18-23. Three compounds showed low antifungal activity against two species: C. albicans (compounds 7 and 23) and C. tropicalis (compound 17) at 200 µg mL−1.
Resumo:
Pera glabrata (Schott) Baill. was selected for this study after showing a preliminary positive result in a screening of Atlantic Forest plant species in the search for acetylcholinesterase inhibitors and antifungal compounds. The bioassays were conducted with crude ethanol extract of the leaves using direct bioautography method for acetylcholinesterase and antifungal activities. This extract was partitioned with hexane, chloroform and ethyl acetate solvents. The active chloroform fraction was submitted to silica gel chromatography column affording 12 groups. Caffeine, an alkaloid, which showed detection limits of 0.1 and 1.0 µg for anticholinesterasic and antifungal activities, respectively, was isolated from group nine. After microplate analyses, only groups four, nine, 10, 11 and 12 showed acetylcholinesterase inhibitory activity of 40% or higher. The group 12 was purified by preparative layer chromatography affording four sub-fractions. Two sub-fractions from this group were analyzed by gas chromatography-mass spectrometry and gas chromatography-flame ionization detector. The first sub-fraction showed anticholinesterasic activity and contained two major compounds: 9-hydroxy-4-megastigmen-3-one (84%) and caffeine (6%). The second sub-fraction presented five major compounds identified as 9-hydroxy-4-megastigmen-3-one, isololiolide, (-) loliolide, palmitic acid and lupeol and did not show activity.
Resumo:
Fungal infection is one of the most important causes of morbidity and mortality in bone marrow transplant (BMT) recipients. The growing incidence of these infections is related to several factors including prolonged granulocytopenia, use of broad-spectrum antibiotics, conditioning regimens, and use of immunosuppression to avoid graft-versus-host disease (GvHD). In the present series, we report five cases of invasive mold infections documented among 64 BMT recipients undergoing fluconazole antifungal prophylaxis: 1) A strain of Scedosporium prolificans was isolated from a skin lesion that developed on day +72 after BMT in a chronic myeloid leukemic patient. 2) Invasive pulmonary aspergillosis (Aspergillus fumigatus) was diagnosed on day +29 in a patient with a long period of hospitalization before being transplanted for severe aplastic anemia. 3) A tumoral lung lesion due to Rhizopus arrhizus (zygomycosis) was observed in a transplanted patient who presented severe chronic GvHD. 4) A tumoral lesion due to Aspergillus spp involving the 7th, 8th and 9th right ribs and local soft tissue was diagnosed in a BMT patient on day +110. 5) A patient with a history of Ph1-positive acute lymphocytic leukemia exhibited a cerebral lesion on day +477 after receiving a BMT during an episode of severe chronic GvHD. At that time, blood and spinal fluid cultures yielded Fusarium sp. Opportunistic infections due to fungi other than Candida spp are becoming a major problem among BMT patients receiving systemic antifungal prophylaxis with fluconazole.
Resumo:
Lactococcus lactis, the model lactic acid bacterium, is a good candidate for heterologous protein production in both foodstuffs and the digestive tract. We attempted to produce Streptomyces tendae antifungal protein 1 (Afp1) in L. lactis with the objective of constructing a strain able to limit fungal growth. Since Afp1 activity requires disulfide bond (DSB) formation and since intracellular redox conditions are reportedly unfavorable for DSB formation in prokaryotes, Afp1 was produced as a secreted form. An inducible expression-secretion system was used to drive Afp1 secretion by L. lactis; Afp1 was fused or not with LEISSTCDA, a synthetic propeptide (LEISS) that has been described to be a secretion enhancer. Production of Afp1 alone was not achieved, but production of LEISS-Afp1 was confirmed by Western blot and immunodetection with anti-Afp1 antibodies. This protein (molecular mass: 9.8 kDa) is the smallest non-bacteriocin heterologous protein ever reported to be secreted in L. lactis via the Sec-dependent pathway. However, no anti-fungal activity was detected, even in concentrated samples of induced supernatant. This could be due to a too low secretion yield of Afp1 in L. lactis, to the absence of DSB formation, or to an improper DSB formation involving the additional cysteine residue included in LEISS propeptide. This raises questions about size limits, conformation problems, and protein secretion yields in L. lactis.
Resumo:
The in vivo antifungal activity of the naphthoquinone beta-lapachone against disseminated infection by Cryptococcus neoformans was investigated. Swiss mice were immunosuppressed daily with dexamethasone (0.5 mg per mouse) intraperitoneally for 3 days, the procedure was repeated 4 days later, and the animals were then challenged intravenously with C. neoformans (10(6) CFU/mL) 1 week later. Seven days after infection, the mice were divided into groups and treated daily with beta-lapachone (10 mg/kg, iv) for 7 (N = 6) and 14 days (N = 10). Amphotericin B (0.5 mg/kg) was used as comparator drug and an additional group received PBS. Treatment with beta-lapachone cleared the yeast from the spleen and liver, and the fungal burden decreased approximately 10(4) times in the lungs and brain 14 days after infection when compared to the PBS group (P < 0.05). This result was similar to that of the amphotericin B-treated group. Protection was suggestively due to in vivo antifungal activity of this drug and apparently not influenced by activation of the immune response, due to similar leukocyte cell counts among all groups. This study highlights the prospective use of beta-lapachone for treatment of disseminated cryptococcosis.