920 resultados para anti-giardial activity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intestinal protozoan parasite Giardia lamblia causes diarrhoea in humans and animals. In the present study, we used the C57BL/6 inbred mouse model to assess the impact of a nematode (Trichinella spiralis) infection on the course of a G. lamblia (clone GS/M-83-H7) infection. Acute trichinellosis coincided with transient intestinal inflammation and generated an intestinal environment that strongly promoted growth of G. lamblia trophozoites although the local anti-Giardia immunoglobulin (Ig) A production was not affected. This increased G. lamblia infection intensity correlated with intestinal mast cell infiltration, mast cell degranulation, and total IgE production. Furthermore, a G. lamblia single-infection investigated in parallel also resulted in intestinal mast cell accumulation but severe infiltration was triggered in the absence of IgE. Recently, intestinal mast cells emerging during a G. lamblia infection were reported to be involved in those immunological mechanisms that control intestinal proliferation of the parasite in mice. This anti-giardial activity was assumed to be related to the capacity of mast cells to produce IL-6. However, this previous assumption was questioned by our present immunohistological findings indicating that murine intestinal mast cells, activated during a G. lamblia infection were IL-6-negative. In the present co-infection experiments, mast cells induced during acute trichinellosis were not able to control a concurrent G. lamblia infection. This observation makes it feasible that the T. spiralis infection created an immunological and physiological environment that superimposed the anti-giardial effect of mast cells and thus favoured intestinal growth of G. lamblia trophozoites in double-infected mice. Furthermore, our findings raise the possibility that intestinal inflammation e.g. as a consequence of a 'pre-existing' nematode infection is a factor which contributes to increased susceptibility of a host to a G. lamblia infection. The phenomenon of a 'pre-existing' nematode infection prior to a G. lamblia infection is a frequent constellation in endemic areas of giardiasis and may therefore have a direct impact on the epidemiological situation of the disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: In order to create a suitable model for high-throughput drug screening, a Giardia lamblia WB C6 strain expressing Escherichia coli glucuronidase A (GusA) was created and tested with respect to susceptibility to the anti-giardial drugs nitazoxanide and metronidazole. METHODS: GusA, a well-established reporter gene in other systems, was cloned into the vector pPacVInteg allowing stable expression in G. lamblia under control of the promoter from the glutamate dehydrogenase (gdh) gene. The resulting transgenic strain was compared with the wild-type strain in a vitality assay, characterized with respect to susceptibility to nitazoxanide, metronidazole and -- as assessed in a 96-well plate format -- to a panel of 15 other compounds to be tested for anti-giardial activity. RESULTS: GusA was stably expressed in G. lamblia. Using a simple glucuronidase assay protocol, drug efficacy tests yielded results similar to those from cell counting. CONCLUSIONS: G. lamblia WB C6 GusA is a suitable tool for high-throughput anti-giardial drug screening.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Giardiasis, currently considered a neglected disease, is caused by the intestinal protozoan parasite Giardia duodenalis and is widely spread in human as well as domestic and wild animals. The lack of appropriate medications and the spread of resistant parasite strains urgently call for the development of novel therapeutic strategies. Host microbiota or certain probiotic strains have the capacity to provide some protection against giardiasis. By combining biological and biochemical approaches, we have been able to decipher a molecular mechanism used by the probiotic strain Lactobacillus johnsonii La1 to prevent Giardia growth in vitro. We provide evidence that the supernatant of this strain contains active principle(s) not directly toxic to Giardia but able to convert non-toxic components of bile into components highly toxic to Giardia. By using bile acid profiling, these components were identified as deconjugated bile-salts. A bacterial bile-salt-hydrolase of commercial origin was able to mimic the properties of the supernatant. Mass spectrometric analysis of the bacterial supernatant identified two of the three bile-salt-hydrolases encoded in the genome of this probiotic strain. These observations document a possible mechanism by which L. johnsonii La1, by secreting, or releasing BSH-like activity(ies) in the vicinity of replicating Giardia in an environment where bile is present and abundant, can fight this parasite. This discovery has both fundamental and applied outcomes to fight giardiasis, based on local delivery of deconjugated bile salts, enzyme deconjugation of bile components, or natural or recombinant probiotic strains that secrete or release such deconjugating activities in a compartment where both bile salts and Giardia are present.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIM: To determine whether trichobitacin, a novel ribosome-inactivating protein purified from the root tubers of Trichosanthes kirilowii, possesses the anti-HIV activity. METHODS: The inhibition of syncytial cell formation induced by human immunodeficiency virus type 1 (HIV-1),was determined under microscope, reduction of HIV-1 p24 antigen expression level was measured by ELISA, and decrease in numbers of HIV-1 antigen positive cells in acutely and-chronically infected cultures were detected by indirect immunofluorescence assay. RESULTS: Trichobitacin Was-found to greatly suppress syncytial cell formation induced by HIV-1 and to markedly reduce both expression of HIV-1 p24 antigen and the number of HIV antigen positive cells in acutely but not chronically HIV-1 infected culture. The median inhibitory concentration (IC50) in inhibition of syncytial cell formation and HIV antigen positive cells were 5 mu g.L-1 (95 % confidence limits: 1.3 - 20 mu g.L-1) and 0.09 mg.L-1 (95 % confidence limits: 0.011 - 0.755 mg.L-1), respectively. CONCLUSION: Trichobitacin is a novel ribosome-inactivating protein with anti-HIV-l activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trichosanthin (TCS) is a type I ribosome inactivating (RI) protein possessing anti-tumor and antiviral activity, including human immunodeficiency virus (HIV). The mechanism of these actions is not entirely clear, but is generally attributed to its RI property. In order to study the relationship between the anti-HIV-1 activity of TCS and its RI activity, three TCS mutants with different RI activities were constructed by using site-directed mutagenesis. The anti-HIV-1 activities of the three mutants were tested in vitro. Results showed that two TCS mutants, namely TCSM((120-123)), TCSE160A/E189A, with the greatest decrease in RI activity, lost almost all of the anti-HIV activity and cytopathic effect. Another mutant TCSR122G, which exhibited a 160-fold decrease in RI activity, retained some anti-HIV activity. The results from this study suggested that RI activity of TCS may have significant contribution to its anti-HIV-1 property. (C) 2002 Published by Elsevier Science B.V. on behalf of the Federation of European Biochemical Societies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trichosanthin (TCS) is a type I ribosome-inactivating (RI) protein possessing multiple biological and pharmacological activities. Its major action is inhibition of human immunodeficiency virus (HIV) replication but the mechanism is still elusive. All evidences showed that this action is related to its RI activity. Previous studies found that TCS mutants with reduced RI activity simultaneously lost some anti-HIV activity. In this study, an exception was demonstrated by two TCS mutants retaining almost all RI activity but were devoid of anti-HIV-1 activity. Five mutants were constructed by using site-directed mutagenesis with either deletion or addition of amino acids to the C-terminal sequence. Results showed that the RI activity of mutants with C-terminal deletion mutants (TCSC2, TCSC4, and TCSC14) decreased by 1.2-3.3-fold with parallel downshifting of its anti-HIV-1 activity (1.4-4.8-fold). Another two mutants, TCSC19aa and TCSKDEL having 19 amino acid extension and a KDEL signal sequence added to the C-terminal sequence, retained all RI activity but subsequently lost most of the anti-HIV-1 activity. These findings suggested that ribosome inactivation alone might not be adequate to explain the anti-HIV action of TCS. (C) 2003 Elsevier Science (USA). All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In our continuing study of triterpene derivatives as potent anti-HIV agents, different C-3 conformationally restricted betulinic acid (BA, 1) derivatives were designed and synthesized in order to explore the conformational space of the C-3 pharmacophore. 3-O-Monomethylsuccinyl-betulinic acid (MSB) analogues were also designed to better understand the contribution of the C-3' dimethyl group of bevirimat (2), the first-in-class HIV maturation inhibitor, which is currently in phase IIb clinical trials. In addition, another triterpene skeleton, moronic acid (MA, 3), was also employed to study the influence of the backbone and the C-3 modification toward the anti-HIV activity of this compound class. This study enabled us to better understand the structure-activity relationships (SAR) of triterpene-derived anti-HIV agents and led to the design and synthesis of compound 12 (EC(50): 0.0006 microM), which displayed slightly better activity than 2 as a HIV-1 maturation inhibitor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: CD19 is a B cell lineage specific surface receptor whose broad expression, from pro-B cells to early plasma cells, makes it an attractive target for the immunotherapy of B cell malignancies. In this study we present the generation of a novel humanized anti-CD19 monoclonal antibody (mAb), GBR 401, and investigate its therapeutic potential on human B cell malignancies. METHODS: GBR 401 was partially defucosylated in order to enhance its cytotoxic function. We analyzed the in vitro depleting effects of GBR 401 against B cell lines and primary malignant B cells from patients in the presence or in absence of purified NK cells isolated from healthy donors. In vivo, the antibody dependent cellular cytotoxicity (ADCC) efficacy of GBR 401 was assessed in a B cell depletion model consisting of SCID mice injected with healthy human donor PBMC, and a malignant B cell depletion model where SCID mice are xenografted with both primary human B-CLL tumors and heterologous human NK cells. Furthermore, the anti-tumor activity of GBR 401 was also evaluated in a xenochimeric mouse model of human Burkitt lymphoma using mice xenografted intravenously with Raji cells. Pharmacological inhibition tests were used to characterize the mechanism of the cell death induced by GBR 401. RESULTS: GBR 401 exerts a potent in vitro and in vivo cytotoxic activity against primary samples from patients representing various B-cell malignancies. GBR 401 elicits a markedly higher level of ADCC on primary malignant B cells when compared to fucosylated similar mAb and to Rituximab, the current anti-CD20 mAb standard immunotherapeutic treatment for B cell malignancies, showing killing at 500 times lower concentrations. Of interest, GBR 401 also exhibits a potent direct killing effect in different malignant B cell lines that involves homotypic aggregation mediated by actin relocalization. CONCLUSION: These results contribute to consolidate clinical interest in developing GBR 401 for treatment of hematopoietic B cell malignancies, particularly for patients refractory to anti-CD20 mAb therapies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New neutral Pd(II) and Pt(II) complexes of the type [M(L)(PPh(3))] (M Pd or Pt) were prepared in crystalline form in high-yield synthesis with the S-benzyldithiocarbazates and S-4-nitrobenzyldithiocarbazates derivatives from 2-hydroxyacetophenone, H(2)L(1a) and H(2)L(1b), and benzoylacetone, H(2)L(2a) and H(2)L(2b). The new complexes [Pt(L(1a))(PPh(3))] (1), [Pd(L(1a))(PPh(3))] (2), [Pt(L(1b))(PPh(3))] (3), [Pd(L(1b))(PPh(3))] (4), [Pt(L(2a))(PPh(3))] (5), [Pd(L(2a))(PPh(3))] (6), [Pt(L(2b))(PPh(3))] (7) and [Pd(L(2b))(PPh(3))] (8) were characterized on the basis of elemental analysis, conductivity measurements, UV-visible, IR, electrospray ionization mass spectrometry (ESI-MS), NMR ((1)H and (31)P) and by X-ray diffraction studies. The studies showed that differently from what was observed for the H(2)L(1a) and H(2)L(1b) ligands, H(2)L(2a) and H(2)L(2b) assume cyclic forms as 5-hydroxypyrazolinic. Upon coordination, H2L2a and H2L2b suffer ring-opening reaction, coordinating in the same manner as H(2)L(1a) and H(2)L(1b), deprotonated and in O,N,S-tridentate mode to the (MPPh(3))(2+) moiety. All complexes show a quite similar planar fourfold environment around the M(II) center. Furthermore, these complexes exhibited biological activity on extra and intracellular forms of Trypanosoma cruzi in a time- and concentration-dependent manner with IC(50) values ranging from 7.8 to 18.7 mu M, while the ligand H(2)L(2a) presented a trypanocidal activity on trypomastigote form better than the standard drug benznidazole. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Propolis is a natural resinous substance collected by bees from vegetal sources and its therapeutic properties have been investigated. In this work, we evaluated the inhibitory activity of ethanolic extracts of propolis (EEP) from the Southeast and South of Brazil on coagulase-negative Staphylococcus (CNS) growth as well as the EEP in vitro synergism with antimicrobial drugs by using the diffusion method (E-test). The EEP chemical characteristics (dry weight, pH, flavonoid and phenolic compounds) were determined. Seven drugs were tested, and synergism was observed between three drugs and Southeast EEP, six drugs and South EEP, and one drug and ethanol control. Ethanolic extracts of propolis from the South of Brazil presented the greatest flavonoid content and synergism rate, while EEP from the Southeast presented the greatest anti-CNS activity and phenolic compound content. Results showed the correlation among anti-CNS activity, synergism rate and chemical characteristics of propolis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O método do orbital molecular AM1 foi empregado para calcular um conjunto de descritores moleculares para vinte neolignanas sintéticas com atividade anti-esquistossomose. O método de reconhecimento de padrão (análise de componentes principais ACP, análise de conglomerados AC e análise de discriminante) foi utilizado para obter a relação entre a estrutura molecular e a atividade biológica. O conjunto de moléculas foi classificado em dois grupos de acordo com seus graus de atividade biológica. Estes resultados permitem que, projete-se racionalmente novos compostos, potenciais candidatos à síntese e à avaliação biológica.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background The recent emergence of extensively multidrug-resistant Mycobacterium tuberculosis strains has further complicated the control of tuberculosis. There is an urgent need for the development of new molecular candidates antitubercular drugs. Medicinal plants have been an excellent source of leads for the development of drugs. The aim of this study was to evaluate the in vitro activity of 28 alcoholic extracts and essential oils of native and exotic Brazilian plants against Mycobacterium tuberculosis and to further study these extracts through chemical fractionation, the isolation of their constituents, and an evaluation of the in vivo acute toxicity of the active extracts. To the best of our knowledge this is the first chemical characterization, antituberculosis activity and acute toxicity evaluation of Annona sylvatica. Methods The anti-mycobacterial activity of these extracts and their constituent compounds was evaluated using the resazurin reduction microtiter assay (REMA). To investigate the acute toxicity of these extracts in vivo, female Swiss mice were treated with the extracts at doses of 500, 1000 and 2000 mg · kg-1 of body weight. The extracts were characterized by LC-MS, and the constituents were isolated and identified by chromatographic analysis of spectroscopic data. Results Of the 28 extracts, the methanol extract obtained from the leaves of Annona sylvatica showed anti-mycobacterial activity with an minimal inhibitory concentration (MIC) of 184.33 μg/mL, and the ethyl acetate fraction (EAF) resulting from liquid-liquid partitioning of the A. sylvatica extract showed an MIC of 115.2 μg/mL. The characterization of this extract by LC-MS identified flavonoids and acetogenins as its main constituents. The phytochemical study of the A. sylvatica EAF resulted in the isolation of quercetin, luteolin, and almunequin. Conclusions Among the compounds isolated from the EAF, luteolin and almunequin were the most promising, with MICs of 236.8 μg/mL (827.28 μM) and 209.9 μg/mL (328.48 μM), respectively. The acute administration of the EAF fraction in doses of 500, 1000, and 2000 mg · kg-1 of body weight did not cause signs of toxicity in the treated animals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hepatitis C is a worldwide public health problem. The available therapies are limited by their partial effectiveness and with meaningful side-effects. Sesquiterpene lactones (SLs) are a group of natural products with a wide variety of chemical structures and biological activities associated. There are few studies about the influence of the molecular structure of SLs for the anti-hepatitis C virus activity. In the present work, SLs are investigated in a subgenomic RNA replicon assay system and were analyzed using multiple linear regression along with self-organizing maps with DRAGON descriptors in order to identify the structural requirements for their biological activity and to predict the inhibitory potency of SLs. Characteristics such as stereochemistry and electronic effects demonstrated to be important for their anti-HCV activity, and the SOM produced a clear separation betwenn active and inactive compounds. Therefore, it is possible to use this map as a filter for virtual screening to predict the anti-HCV activity of SLs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A library of 426 FDA-approved drugs was screened for in vitro activity against E. multilocularis metacestodes employing the phosphoglucose isomerase (PGI) assay. Initial screening at 20 µM revealed that 7 drugs induced considerable metacestode damage, and further dose-response studies revealed that bortezomib (BTZ), a proteasome inhibitor developed for the chemotherapy of myeloma, displayed high anti-metacestodal activity with an EC50 of 0.6 µM. BTZ treatment of E. multilocularis metacestodes led to an accumulation of ubiquinated proteins and unequivocally parasite death. In-gel zymography assays using E. multilocularis extracts demonstrated BTZ-mediated inhibition of protease activity in a band of approximately 23 kDa, the same size at which the proteasome subunit beta 5 of E. multilocularis could be detected by Western blot. Balb/c mice experimentally infected with E. multilocularis metacestodes were used to assess BTZ treatment, starting at 6 weeks post-infection by intraperitoneal injection of BTZ. This treatment led to reduced parasite weight, but to a degree that was not statistically significant, and it induced adverse effects such as diarrhea and neurological symptoms. In conclusion, the proteasome was identified as a drug target in E. multilocularis metacestodes that can be efficiently inhibited by BTZ in vitro. However, translation of these findings into in vivo efficacy requires further adjustments of treatment regimens using BTZ, or possibly other proteasome inhibitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The medicinal qualities of pineapple are recognized in many traditions in South America, China and Southeast Asia. These qualities are attributed to bromelain, a 95%-mixture of proteases. Medicinal qualities of bromelain include anti-inflammatory, anti-thrombotic, fibrinolytic and anti-cancer functions. Existing evidence derived from clinical observations as well as from mouse- and cell-based models suggests that bromelain acts systemically, affecting multiple cellular and molecular targets. In recent years, studies have shown that bromelain has the capacity to modulate key pathways that support malignancy. It is now possible to suggest that the anti-cancer activity of bromelain consists in the direct impact on cancer cells and their micro-environment, as well as in the modulation of immune, inflammatory and haemostatic systems. This review will summarize existing data relevant to bromelain's anti-cancer activity and will suggest mechanisms which account for bromelain's effect, in the light of research involving non-cancer models. The review will also identify specific new research questions that will need to be addressed in order for a full assessment of bromelain-based anti-cancer therapy.