996 resultados para and Nd isotope ratios


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report oxygen and carbon stable isotope analyses of foraminifers, primarily planktonic, sampled at low resolution in the Cretaceous and Paleogene sections from Sites 1257, 1258, and 1260. Data from two samples from Site 1259 are also reported. The very low resolution of the data only allows us to detect climate-driven isotopic events on the timescale of more than 500 k.y. A several million-year-long interval of overall increase in planktonic 18O is seen in the Cenomanian at Site 1260. Before and after this interval, foraminifers from Cenomanian and Turonian black shales have d18O values in the range -4.2 per mil to -5.0 per mil, suggestive of upper ocean temperatures higher than modern tropical values. The d18O values of upper ocean dwelling Paleogene planktonics exhibit a long-term increase from the early Eocene to the middle Eocene. During shipboard and postcruise processing, it proved difficult to extract well-preserved foraminifer tests from black shales by conventional techniques. Here, we report results of a test of procedures for cleaning foraminifers in Cretaceous organic-rich mudstone sediments using various combinations of soaking in bleach, Calgon/hydrogen peroxide, or Cascade, accompanied by drying, repeat soaking, or sonication. A procedure that used 100% bleach, no detergent, and no sonication yielded the largest number of clean, whole individual foraminifers with the shortest preparation time. We found no significant difference in d18O or d13C values among sets of multiple samples of the planktonic foraminifer Whiteinella baltica extracted following each cleaning procedure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abyssal peridotites are normally thought to be residues of melting of the mid-ocean ridge basalt (MORB) source and are presumably a record of processes affecting the upper mantle. Samples from a single section of abyssal peridotite from the Kane Transform area in the Atlantic Ocean were examined for 190Pt-186Os and 187Re-187Os systematics. They have uniform 186Os/188Os ratios with a mean of 0.1198353 +/- 7, identical to the mean of 0.1198340 +/-12 for Os-Ir alloys and chromitites believed to be representative of the upper mantle. While the Pt/Os ratios of the upper mantle may be affected locally by magmatic processes, these data show that the Pt/Os ratio for the bulk upper mantle has not deviated by more than about +/- 30% from a chondritic Pt/Os ratio over 4.5 billion years. These observations are consistent with the addition of a chondritic late veneer after core separation as the primary control on the highly siderophile element budget of the terrestrial upper mantle. The 187Os/188Os of the samples range from 0.12267 to 0.12760 and correlate well with Pt and Pt/Os, but not Re/Os. These relationships may be explained by variable amounts of partial melting with changing D(Re), reflecting in part garnet in the residue, with a model-dependent melting age between about 600 and 1700 Ma. A model where the correlation between Pt/Os and 187Os/188Os results from multiple ancient melting events, in mantle peridotites that were later juxtaposed by convection, is also consistent with these data. This melting event or events are evidently unrelated to recent melting under mid-ocean ridges, because recent melting would have disturbed the relationship between Pt/Os and 187Os/188Os. Instead, this section of abyssal peridotite may be a block of refractory mantle that remained isolated from the convecting portions of the upper mantle for 600 Ma to >1 Ga. Alternatively, Pt and Os may have been sequestered during more recent melting and possibly melt/rock reaction processes, thereby preserving an ancient melting history. If representative of other abyssal peridotites, then the rocks from this suite with subchondritic 187Os/188Os are not simple residues of recent MORB source melting at ridges, but instead have a more complex history. This suite of variably depleted samples projects to an undepleted present-day Pt/Os of about 2.2 and 187Os/188Os of about 0.128-0.129, consistent with estimates for the primitive upper mantle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We determined the stable oxygen and carbon isotopic composition of live (Rose Bengal stained) tests belonging to different size classes of two benthic foraminiferal species from the Pakistan continental margin. Samples were taken at 2 sites, with water depth of about 135 and 275 m, corresponding to the upper boundary and upper part of the core region of the oxygen minimum zone (OMZ). For Uvigerina ex gr. U. semiornata and Bolivina aff. B. dilatata, delta13C and delta18O values increased significantly with increasing test size. In the case of U. ex gr. U. semiornata, delta13C increased linearly by about 0.105 per mil for each 100-µm increment in test size, whereas delta18O increased by 0.02 to 0.06 per mil per 100 µm increment. For B. aff. B. dilatata the relationship between test size and stable isotopic composition is better described by logarithmic equations. A strong positive linear correlation is observed between delta18O and delta13C values of both taxa, with a constant ratio of delta18O and delta13C values close to 2:1. This suggests that the strong ontogenetic effect is mainly caused by kinetic isotope fractionation during CO2 uptake. Our data underline the necessity to base longer delta18O and delta13C isotope records derived from benthic foraminifera on size windows of 100 µm or less. This is already common practice in down-core isotopic studies of planktonic foraminifera.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Causes of change in deep water delta13C can be either global or local in extent. Global causes include (1) climatically-induced changes in the amount of terrestrial biomass which alter the average carbon isotopic composition of the oceanic reservoir (Shackleton, 1977), and (2) erosion and deposition of organic-rich, continental shelf sediments during sea level fluctuations which change the mean oceanic carbon: phosphorus ratio (Broecker, 1982 doi:10.1016/0079-6611(82)90007-6). Regional gradients of delta13C are created by remineralization of organic detritus within the deep ocean itself thus reflecting the distribution of water masses and modern thermohaline flow. Changes in a single geological record of benthic foraminiferal delta13C can result from any combination of these global and abyssal circulation effects. By sampling a large number of cores collected over a wide bathymetric range yet confined to a small geographical region we have minimized the ambiguity. We can assume that each delta13C record was equally affected by global causes of delta13C variation. The differences seen between the delta13C records must, therefore, reflect changes in the distribution of delta13C in the deep ocean. We interpret these differences in distribution in terms of changes in the ocean's abyssal circulation. Benthic foraminiferal carbon isotopic evidence from a suite of Sierra Leone Rise cores indicates that the deeper parts of the eastern Atlantic basins underwent a reduction in [O2] during the maximum of the last glaciation. Reduced advection of O2-rich deep water through low-latitude fracture zones, associated with increased delivery of organic matter to the deep ocean, lowered the delta13C of deep water SumCO2 at all depths below the sill separating the eastern and western Atlantic basins (Metcalf et al., 1964 doi:10.1016/0011-7471(64)91078-2). This decreased advection into the eastern Atlantic Ocean coincides with the overall decrease in deep water production in the North Atlantic during the last glacial maximum (Curry and Lohmann, 1982 doi:10.1016/0033-5894(82)90071-0; Boyle and Keigwin, 1982 doi:10.1126/science.218.4574.784; Schnitker, 1979 doi:10.1016/0377-8398(79)90020-3; Streeter and Shackleton, 1979 doi:10.1126/science.203.4376.168).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Re-Os and Pb-Pb isotopic analysis of reduced varved sediments cored in the deeper basin of Saanich Inlet (B.C.) are presented. From core top to 61 cm down-core, spanning approximately the last 100 yrs of sedimentation, 187Os/188Os ratio and Os concentration respectively increase from ~0.8 to ~0.9 and from 55 to 60 ppt, whereas Re concentration decreases from 3600 to 2600 ppt. Re correlates with Corg (R2=0.6) throughout the entire section, whereas Os follows Re and Corg trends deeper down-core, suggesting a decoupling of a Re- and Os-geochemistry during burial and/or very early diagenesis. No systematic compositional differences are observed between seasonal laminae. 204Pb-normalized lead isotope ratios increase from sediment surface down to 7 cm down-core, then decrease steadily to pre-industrial levels at ~50 cm down-core. This pattern illustrates the contamination from leaded gasoline until the recent past. The measured Pb isotopic ratios point primarily toward gasoline related atmospheric lead from the USA. The osmium isotopic values measured are significantly lower than those of modern seawater-Os. In comparison with other anoxic environments, the osmium content of Saanich Inlet sediments is low, and its Os isotopic composition suggests significant inputs from unradiogenic sources (detrital and/or dissolved). Ultramafic lithologies in the watershed of the Fraser River are suspected to contribute to sedimentary inputs as well as to the input of dissolved unradiogenic osmium in the water of Saanich Inlet. The presence of some unradiogenic Os from anthropogenic contamination cannot be discounted near the core top, but since deeper, pre-anthropogenic levels also yielded unradiogenic Os results, one is led to conclude that the overall low 187Os/188Os ratios result from natural geochemical processes. Thus, the bulk sediment of Saanich Inlet does not appear to record 187Os/188Os composition of the marine end-member of the only slightly below normal salinity, fjord water. The low seawater-derived Os content of the sediment, coupled with unradiogenic Os inputs from local sources, explains the overall low isotopic values observed. As a consequence, such near-shore anoxic sediments are unlikely to record changes in the past ocean Os isotopic composition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sensitivities of benthic foraminiferal Mg/Ca and Li/Ca to bottom water temperature and carbonate saturation state have recently been assessed. Here we present a new approach that uses paired Mg/Ca and Li/Ca records to calculate simultaneous changes in temperature and saturation state. Using previously published records, we first use this approach to document a cooling of deep ocean waters associated with the establishment of the Antarctic ice sheet at the Eocene-Oligocene climate transition. We then apply this approach to new records of the Middle Miocene Climate Transition from ODP Site 761 to estimate variations in bottom water temperature and the oxygen isotopic composition of seawater. We estimate that the oxygen isotopic composition of seawater varied by ~1 per mil between the deglacial extreme of the Miocene Climatic Optimum and the glacial maximum following the Middle Miocene Climate Transition, indicating large amplitude variations in ice volume. However, the longer-term change between 15.3 and 12.5 Ma is marked by a ~1°C cooling of deep waters, and an increase in the oxygen isotopic composition of seawater of ~0.6 per mil. We find that bottom water saturation state increased in the lead up to the Middle Miocene Climate Transition and decreased shortly after. This supports decreasing pCO2 as a driver for global cooling and ice sheet expansion, in agreement with existing boron isotope and leaf stomatal index CO2 records but in contrast to the published alkenone CO2 records.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon, hydrogen, and oxygen isotope ratios determined on 32 squeezed interstitial fluid samples show remarkable variations with depth. For the most part these variations are related to diagenetic and alteration reactions taking place in the sediments, and in the underlying basalts. delta13C SumCO2 depth distributions at Sites 642 and 643 are the result of mixing of original SumCO2 of the paleo bottom water with SumCO2 released by remineralization of organic matter. At Site 644, where sulfate exhaustion occurs, the processes of methanogenesis by CO2 reduction and anaerobic methanotrophy strongly influence the delta13C SumCO2 distribution. Hydrogen and oxygen isotopes roughly covary, and become enriched in 16O and1H with depth. This effect is most pronounced at Sites 642 and 643, possibly due to the influence of the directly underlying basalts. Isotope depletions at Site 644 are much lower, corresponding to the greater sediment depth to basement. The alternative, that the O, H isotope shifts are due primarily to autochthonous diagenetic and exchange reactions, is not supported by the data available.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The isotopic composition and diversity of nannofossils were studied in cores from the Deep Sea Drilling Project (DSDP) Sites 525A, 527, 528, and 529 from the Walvis Ridge, South Atlantic to better understand the changes which occurred across the Cretaceous/Tertiary boundary (K/T boundary). The stratigraphic range of the samples is from the Arkhangelskiella cymbiformis Zone in the Maastrichtian to the Heliolithus kleinpelli Zone in the Danian. Nannofossil diversity was high (Shannon-Weaver diversity index, 'H= 2.5-3) in the late Cretaceous, but decreased sharply (H c. 1 ) across the K/T boundary. The delta13C values also decrease across the K/T boundary at the four sites, suggesting a reduction in surface productivity in the South Atlantic concomitant with the reduction in diversity. During the Danian, nannofossil diversity and delta13C show some recovery approximately 500-700 k.y. after the boundary event. However, not until 2.5 Ma after the boundary event did diversity become constant. Diversity values similar to those for the late Cretaceous were not attained again in the early Paleocene interval studied. Carbon isotopic compositions similar to those from the Cretaceous were not attained until 4.5 Ma after the K/T event.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Benthic oxygen and carbon isotopic results from a depth transect on Maud Rise, Antarctica, provide the first evidence for Warm Saline Deep Water (WSDW) in the Paleogene oceans. Distinct reversals occur in the oxygen isotopic gradient between the shallower Hole 689B (Eocene depth ~1400 m; present-day depth 2080 m) and the deeper Hole 690B (Eocene depth ~2250 m; present-day depth 2914 m). The isotopic reversals, well developed by at least 46 Ma (middle middle Eocene), existed for much of the remaining Paleogene. We do not consider these reversals to be artifacts of differential diagenesis between the two sites or to have resulted from other potentially complicating factors. This being so, the results show that deep waters at Hole 690B were significantly warmer than deep waters at the shallower Hole 689B. A progressive decrease and eventual reversal in benthic to planktonic delta18O gradients in Hole 690B, demonstrate that the deeper waters became warmer relative to Antarctic surface waters during the Eocene. The warmer deep waters of the Paleogene are inferred to have been produced at middle to low latitudes, probably in the Tethyan region which contained extensive shallow-water platforms, ideal sites for the formation of high salinity water through evaporative processes. The ocean during the Eocene, and perhaps the Paleocene, is inferred to have been two-layered, consisting of warm, saline deep waters formed at low latitudes and overlain by cooler waters formed at high latitudes. This thermospheric ocean, dominated by halothermal circulation we name Proteus. The Neogene and modern psychrospheric ocean Oceanus is dominated by thermohaline circulation of deep waters largely formed at high latitudes. An intermediate condition existed during the Oligocene, with a three-layered ocean that consisted of cold, dense deep waters formed in the Antarctic (Proto-AABW), overlain by warm, saline deep waters from low latitudes, and in turn overlain by cool waters formed in the polar regions. This we name Proto-oceanus which combined both halothermal and thermohaline processes. The sequence of high latitude, major, climatic change inferred from the oxygen isotopic records is as follows: generally cooler earlier Paleocene; warming during the late Paleocene; climax of Cenozoic warmth during the early Eocene and continuing into the early middle Eocene; cooling mainly in a series of steps during the remainder of the Paleogene. Superimposed upon this Paleogene pattern, the Paleocene/Eocene boundary is marked by a brief but distinct warming that involved deep to surface waters and a reduction in surface to deep carbon and oxygen isotopic gradients. This event coincided with major extinctions among the deep-sea benthic foraminifers as shown by Thomas (1990 doi:10.2973/odp.proc.sr.113.123.1990). Salinity has played a major role in deep ocean circulation, and thus paleotemperatures cannot be inferred directly from the oxygen isotopic composition of Paleogene benthic foraminifers without first accounting for the salinity effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sulfur contents of 21 basalt samples from four DSDP Leg 82 holes were determined and the isotopic compositions of sulfur were measured on 15 of them. Most of the basalts are altered and have sulfur contents of about 100 ppm. Isotopic ratios for sulfate and total sulfur range from +0.7 to +10.5 per mil, indicating almost complete leaching of the igneous sulfide in low-sulfur samples by alteration. Total sulfur content of some samples ranges between 960 and 1170 ppm, somewhat higher than expected for tholeiitic basalts. The isotope ratios of total sulfur in these samples are slightly shifted to values heavier than the generally assumed mantle ratio of zero, and this shift is thought to result from a secondary source of sulfur.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report new 187Os/186Os data and Re and Os concentrations in metalliferous sediments from the Pacific to construct a composite Os isotope seawater evolution curve over the past 80 m.y. Analyses of four samples of upper Cretaceous age yield 187Os/186Os values of between 3 and 6.5 and 187Re/186Os values below 55. Mass balance calculations indicate that the pronounced minimum of about 2 in the Os isotope ratio of seawater at the K-T boundary probably reflects the enormous input of cosmogenic material into the oceans by the K-T impactor(s). Following a rapid recovery to 187Os/186Os of 3.5 at 63 Ma, data for the early and middle part of the Cenozoic show an increase in 187Os/186Os to about 6 at 15 Ma. Variations in the isotopic composition of leachable Os from slowly accumulating metalliferous sediments show large fluctuations over short time spans. In contrast, analyses of rapidly accumulating metalliferous carbonates do not exhibit the large oscillations observed in the pelagic clay leach data. These results together with sediment leaching experiments indicate that dissolution of non-hydrogenous Os can occur during the hydrogen peroxide leach and demonstrate that Os data from pelagic clay leachates do not always reflect the Os isotopic composition of seawater. New data for the late Cenozoic further substantiate the rapid increase in the 187Os/186Os of seawater during the past 15 Ma. We interpret the correlation between the marine Sr and Os isotope records during this time period as evidence that weathering within the drainage basin of the Ganges-Brahmaputra river system is responsible for driving seawater Sr and Os toward more radiogenic isotopic compositions. The positive correlation between 87Sr/86Sr and U concentration, the covariation of U and Re concentrations, and the high dissolved Re, U and Sr concentrations found in the Ganges-Brahmaputra river waters supports this interpretation. Accelerating uplift of many orogens worldwide over the past 15 Ma, especially during the last 5 Ma, could have contributed to the rapid increase in 187Os/186Os from 6 to 8.5 over the past 15 Ma. Prior to 15 Ma the marine Sr and Os record are not tightly coupled. The heterogeneous distribution of different lithologies within eroding terrains may play an important role in decoupling the supplies of radiogenic Os and Sr to the oceans and account for the periods of decoupling of the marine Sr and Os isotope records.