1000 resultados para ambient soil, Oman


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The variation in the Ca:Mg ratio in amendments used to neutralize soil acidity is one way of altering the availability of those nutrients to the plants in acid soils. The objective of the work was to evaluate the effect of different proportions of calcium and magnesium in the form of CaCO(3) and MgCO(3) Oil the nutrient uptake, and initial production of dry matter by corn plants. The study was carried out in greenhouse conditions, in Lages, SC, with a completely randomized experimental design, with three replications. The treatments were the application of equivalent to 21.0 t ha(-1) of lime, using mixtures of CaCO(3) and MgCO(3) in several proportions to obtain different Ca:Mg ratios (1: 1, 2:1, 4:1, 8:1, 16:1 and 32:1), on a Humic Alic Cambisol, with 310 g kg(-1) of clay. The application of treatments caused the following Ca:Mg ratios in the CEC: 1. 1: 1, 2.1:1, 4.0:1, 8.1:1, 16.4:1 and 31.8:1. The high concentrations of exchangeable Ca in soil caused by addition of lime with high Ca content inhibited the uptake of Mg and K by the corn plants. The increase in the soil Ca:Mg ratio reduced the dry matter production and height of plants in the initial stage of development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present investigation is the first part of an initiative to prepare a regional map of the natural abundance of selenium in various areas of Brazil, based on the analysis of bean and soil samples. Continuous-flow hydride generation electrothermal atomic absorption spectrometry (HG-ET AAS) with in situ trapping on an iridium-coated graphite tube has been chosen because of the high sensitivity and relative simplicity. The microwave-assisted acid digestion for bean and soil samples was tested for complete recovery of inorganic and organic selenium compounds (selenomethionine). The reduction of Se(VI) to Se(IV) was optimized in order to guarantee that there is no back-oxidation, which is of importance when digested samples are not analyzed immediately after the reduction step. The limits of detection and quantification of the method were 30 ng L(-1) Se and 101 ng L(-1) Se, respectively, corresponding to about 3 ng g(-1) and 10 ng g(-1), respectively, in the solid samples, considering a typical dilution factor of 100 for the digestion process. The results obtained for two certified food reference materials (CRM), soybean and rice, and for a soil and sediment CRM confirmed the validity of the investigated method. The selenium content found in a number of selected bean samples varied between 5.5 +/- 0.4 ng g(-1) and 1726 +/- 55 ng g(-1), and that in soil samples varied between 113 +/- 6.5 ng g(-1) and 1692 +/- 21 ng g(-1). (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aims of this study were to evaluate whether air pollution during pre-natal and post-natal phases change habituation and short-term discriminative memories and if oxidants are involved in this process. As secondary objectives, it was to evaluate if the change of filtered to nonfiltered environment could protect the cortex of rats against oxidative stress as well as to modify the behavior of these animals. Wistar, male rats were divided into four groups (n = 12/group): pre and post-natal exposure until adulthood to filtered air (FA); pre-natal period to nonfiltered air (NFA-FA); until (21st post-natal day) and post-natal to filtered air until adulthood (PND21); prenatal to filtered air until PND21 and post-natal to nonfiltered air until adulthood (FA-NFA); pre and post-natal to nonfiltered air (NFA). After 150 days of air pollution exposure, animals were tested in the spontaneous object recognition test to evaluate short-term discriminative and habituation memories. Rats were euthanized; blood was collected for metal determination; cortex dissected for oxidative stress evaluation. There was a significant increase in malondialdehyde (MDA) levels in the NFA group when compared to other groups (FA: 1.730 +/- 0.217; NFA-FA: 1.101 +/- 0.217; FA-NFA: 1.014 +/- 0.300; NFA: 5.978 +/- 1.920 nmol MDA/mg total proteins; p = 0.007). NFA group presented a significant decrease in short-term discriminative (FA: 0.603 +/- 0.106; NFA-FA: 0.669 +/- 0.0666; FA-NFA: 0.374 +/- 0.178; NFA: -0.00631 +/- 0.106 sec; p = 0.006) and an improvement in habituation memories when compared to other groups. Therefore, exposure to air pollution during both those periods impairs short-term discriminative memory and cortical oxidative stress may mediate this process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of 'balanced' Ca, Mg, and K ratios, as prescribed by the basic cation saturation ratio (BCSR) concept, is still used by some private soil-testing laboratories for the interpretation of soil analytical data. This review aims to examine the suitability of the BCSR concept as a method for the interpretation of soil analytical data. According to the BCSR concept, maximum plant growth will be achieved only when the soil’s exchangeable Ca, Mg, and K concentrations are approximately 65 % Ca, 10 % Mg, and 5 % K (termed the ‘ideal soil’). This ‘ideal soil’ was originally proposed by Firman Bear and co-workers in New Jersey (USA) during the 1940s as a method of reducing luxury K uptake by alfalfa (Medicago sativa L.). At about the same time, William Albrecht, working in Missouri (USA), concluded through his own investigations that plants require a soil with a high Ca saturation for optimal growth. Whilst it now appears that several of Albrecht’s experiments were fundamentally flawed, the BCSR (‘balanced soil’) concept has been widely promoted, suggesting that the prescribed cationic ratios provide optimum chemical, physical, and biological soil properties. Our examination of data from numerous studies (particularly those of Albrecht and Bear, themselves) would suggest that, within the ranges commonly found in soils, the chemical, physical, and biological fertility of a soil is generally not influenced by the ratios of Ca, Mg, and K. The data do not support the claims of the BCSR, and continued promotion of the BCSR will result in the inefficient use of resources in agriculture and horticulture.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This book provides a way for farmers in developing countries to benefit from scientific knowledge on plant nutrition and soil fertility. Specifically, it will help farmers recognise and deal with shortages or excesses of chemical elements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bulk density of undisturbed soil samples can be measured using computed tomography (CT) techniques with a spatial resolution of about 1 mm. However, this technique may not be readily accessible. On the other hand, x-ray radiographs have only been considered as qualitative images to describe morphological features. A calibration procedure was set up to generate two-dimensional, high-resolution bulk density images from x-ray radiographs made with a conventional x-ray diffraction apparatus. Test bricks were made to assess the accuracy of the method. Slices of impregnated soil samples were made using hardsetting seedbeds that had been gamma scanned at 5-mm depth increments in a previous study. The calibration procedure involved three stages: (i) calibration of the image grey levels in terms of glass thickness using a staircase made from glass cover slips, (ii) measurement of ratio between the soil and resin mass attenuation coefficients and the glass mass attenuation coefficient, using compacted bricks of known thickness and bulk density, and (iii) image correction accounting for the heterogeneity of the irradiation field. The procedure was simple, rapid, and the equipment was easily accessible. The accuracy of the bulk density determination was good (mean relative error 0.015), The bulk density images showed a good spatial resolution, so that many structural details could be observed. The depth functions were consistent with both the global shrinkage and the gamma probe data previously obtained. The suggested method would be easily applied to the new fuzzy set approach of soil structure, which requires generation of bulk density images. Also, it would be an invaluable tool for studies requiring high-resolution bulk density measurement, such as studies on soil surface crusts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multisegment percolation system (MSPS) consisting of 25 individual collection wells was constructed to study the effects of localised soil heterogeneities on the transport of solutes in the vadose zone. In particular, this paper discusses the transport of water and nutrients (NO3-, Cl-, PO43-) through structurally stable, free-draining agricultural soil from Victoria, Australia. A solution of nutrients was irrigated onto the surface of a large undisturbed soil core over a 12-h period. This was followed by a continuous irrigation of distilled water at a fate which did not cause pending for a further 18 days. During this time, the volume of leachate and the concentration of nutrients in the leachate of each well were measured. Very significant variation in drainage patterns across a small spatial scale was observed. Leaching of nitrate-nitrogen and chloride from the core occurred two days after initial application. However, less than 1% of the total applied phosphate-phosphorus leached from the soil during the 18-day experiment, indicating strong adsorption. Our experiments indicate considerable heterogeneity in water flow patterns and solute leaching on a small spatial scale. These results have significant ramifications for modelling solute transport and predicting nutrient loadings on a larger scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Under certain soil conditions, e.g. hardsetting clay B-horizons of South-Eastern Australia, wheat plants do not perform as well as would be expected given measurements of bulk soil attributes. In such soils, measurement indicates that a large proportion (80%) of roots are preferentially located in the soil within 1 mm of macropores. This paper addresses the question of whether there are biological and soil chemical effects concomitant with this observed spatial relationship. The properties of soil manually dissected from the 1-3 mm wide region surrounding macropores, the macropore sheath, were compared to those that are measured in a conventional manner on the bulk soil. Field specimens of two different soil materials were dissected to examine biological differentiation. To ascertain whether the macropore sheath soil differs from rhizosphere soil, wheat was grown in structured and repacked cores under laboratory conditions. The macropore sheath soil contained more microbial biomass per unit mass than both the bulk soil and the rhizosphere. The bacterial population in the macropore sheath was able to utilise a wider range of carbon substrates and to a greater extent than the bacterial population in the corresponding bulk soil. These differences between the macropore sheath and bulk soil were almost non-existent in the repacked cores. Evidence for larger numbers of propagules of the broad host range fungus Pythium in the macropore sheath soil were also obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants require roots to supply water, nutrients and oxygen for growth. The spatial distribution of roots in relation to the macropore structure of the soil in which they are growing influences how effective they are at accessing these resources. A method for quantifying root-macropore associations from horizontal soil sections is illustrated using two black vertisols from the Darling Downs, Queensland, Australia. Two-dimensional digital images were obtained of the macropore structure and root distribution for an area 55 x 55 mm at a resolution of 64 mu m. The spatial distribution of roots was quantified over a range of distances using the K-function. In all specimens, roots were shown to be clustered at short distances (1-10 mm) becoming more random at longer distances. Root location in relation to macropores was estimated using the function describing the distance of each root to the nearest macropore. From this function, a summary variable, termed the macropore sheath, was defined. The macropore sheath is the distance from macropores within which 80% of roots are located. Measured root locations were compared to random simulations of root distribution to establish if there was a preferential association between roots and macropores. More roots were found in and around macropores than expected at random.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pepper (Capsicum annuum L.) plants were grown aeroponically in a Singapore greenhouse under natural diurnally fluctuating ambient shoot temperatures, but at two different root-zone temperatures (RZTs): a constant 20 +/- 2 degrees C RZT and a diurnally fluctuating ambient (A) (25-40 degrees C) RZT, Plants grown at 20-RZT had more leaves, greater leaf area and dry weight than A-RZT plants. Reciprocal transfer experiments were conducted between RZTs to investigate the effect on plant growth, stomatal conductance (g(s)) and water relations. Transfer of plants from A-RZT to 20-RZT increased plant dry weight, leaf area, number of leaves, shoot water potential (Psi(shoot)), and g(s); while transfer of plants from 20-RZT to A-RZT decreased these parameters. Root hydraulic conductivity was measured in the latter transfer and decreased by 80% after 23 d at A-RZT. Transfer of plants from 20-RZT to A-RZT had no effect on xylem ABA concentration or xylem nitrate concentration, but reduced xylem sap pH by 0.2 units. At both RZTs, g(s) measured in the youngest fully expanded leaves increased with plant development. In plants with the same number of leaves, A-RZT plants had a higher g(s) than 20-RZT plants, but only under high atmospheric vapour pressure deficit. The roles of chemical signals and hydraulic factors in controlling g(s) of aeroponically grown Capsicum plants at different RZTs are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant performance is, at least partly, linked to the location of roots with respect to soil structure features and the micro-environment surrounding roots. Measurements of root distributions from intact samples, using optical microscopy and field tracings have been partially successful but are imprecise and labour-intensive. Theoretically, X-ray computed micro-tomography represents an ideal solution for non-invasive imaging of plant roots and soil structure. However, before it becomes fast enough and affordable or easily accessible, there is still a need for a diagnostic tool to investigate root/soil interplay. Here, a method for detection of undisturbed plant roots and their immediate physical environment is presented. X-ray absorption and phase contrast imaging are combined to produce projection images of soil sections from which root distributions and soil structure can be analyzed. The clarity of roots on the X-ray film is sufficient to allow manual tracing on an acetate sheet fixed over the film. In its current version, the method suffers limitations mainly related to (i) the degree of subjectivity associated with manual tracing and (ii) the difficulty of separating live and dead roots. The method represents a simple and relatively inexpensive way to detect and quantify roots from intact samples and has scope for further improvements. In this paper, the main steps of the method, sampling, image acquisition and image processing are documented. The potential use of the method in an agronomic perspective is illustrated using surface and sub-surface soil samples from a controlled wheat trial. Quantitative characterization of root attributes, e.g. radius, length density, branching intensity and the complex interplay between roots and soil structure, is presented and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The measurement of organic carbon in soils has traditionally used dichromate oxidation procedures including the Wakley and Black and the Heanes methods. The measurement of carbon in soils by high temperature combustion is now widely used providing a rapid automated procedure without the use of toxic chemicals. This procedure however measures total carbon thus requiring some means of correction for soil samples containing carbonate and charcoal forms of carbon. This paper examines the effects of known additions of charcoal to a range of soil types on the results obtained by the Walkley and Black, Heanes and combustion methods. The results show, that while the charcoal carbon does not react under Walkley and Black conditions, some proportion does so with the Heanes method. A comparison of six Australian Soil and Plant Analysis Council reference soil samples by the three methods showed good agreement between the Heanes method, the combustion method and only slightly lower recoveries by the Walkley and Black procedure. Carbonate carbon will cause an overestimation of soil organic carbon by the combustion method thus requiring a separate determination of carbonate carbon to be applied as a correction. This work shows that a suitable acid pre-treatment of alkaline soils in the sample boats followed by a drying step eliminates the carbonate carbon prior to combustion and the need for an additional measurement. The measurement of carbon in soils by high temperature combustion in an oxygen atmosphere has been shown to be a rapid and reliable method capable of producing results in good agreement with one of the established dichromate oxidation procedures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study conducts an economic analysis of investment in simple soil conservation technologies in the highlands of Eritrea. The data used in the analysis were obtained from a farm survey and supplemented with data from secondary sources. Risk analysis techniques are used to take account of the uncertainties regarding the relationship between soil erosion and crop yield. The financial analysis reveals negative net present values (NPVs) and internal rates of return (IRRs) below 12 per cent for various slope categories. On the other hand, the economic analysis returns positive NPVs and IRRs of over 20 per cent. The results clearly indicate that in-vestment in soil conservation technology may not be a viable short-term proposition from the farmer's point of view and yet the net social benefits are positive. There is a strong case for government to provide incentives for soil conservation in view of the economic benefits.