994 resultados para alpha-globin structural variants
Resumo:
omega -Conotoxins selective for N-type calcium channels are useful in the management of severe pain. In an attempt to expand the therapeutic potential of this class, four new omega -conotoxins (CVIA-D) have been discovered in the venom of the piscivorous cone snail, Conus catus, using assay-guided fractionation and gene cloning. Compared with other omega -conotoxins, CVID has a novel loop 4 sequence and the highest selectivity for N-type over P/Q-type calcium channels in radioligand binding assays. CVIA-D also inhibited contractions of electrically stimulated rat vas deferens. In electrophysiological studies, omega -conotoxins CVID and MVIIA had similar potencies to inhibit current through central (alpha (1B-d)) and peripheral (alpha (1B-b)) splice variants of the rat N-type calcium channels when coexpressed with rat beta (3) in Xenopus oocytes, However, the potency of CVID and MVIIA increased when alpha (1B-d) and alpha (1B-b) were expressed in the absence of rat beta (3), an effect most pronounced for CVID at alpha (1B-d) (up to 540-fold) and least pronounced for MVIIA at alpha (1B-d) (3-fold). The novel selectivity of CVID may have therapeutic implications. H-1 NMR studies reveal that CMD possesses a combination of unique structural features, including two hydrogen bonds that stabilize loop 2 and place loop 2 proximal to loop 4, creating a globular surface that is rigid and well defined.
Resumo:
A group of transposons, named maT, with characteristics intermediate between mariner and Tc1 transposons, is described. Two defective genomic copies of MdmaT from the housefly Musca domestica, with 85% identity, were found flanking and imbedded in the MdalphaE7 esterase gene involved in organophosphate insecticide resistance. Two cDNA clones, with 99% identity to each other and 72%-89% identity to the genomic copies were also obtained, but both represented truncated versions of the putative open reading frame. A third incomplete genomic copy of MdmaT was also identified upstream of the putative M. domestica period gene. The MdmaT sequences showed high identity to the transposable element Bmmar1 from the silk-worm moth, Bombyx mori, and to previously unidentified sequences in the genome of Caenorhabditis elegans. A total of 16 copies of full-length maT sequences were identified in the C elegans genome, representing three variants of the transposon, with 34%-100% identity amongst them. Twelve of the copies, named CemaT1, were virtually identical, with eight of them encoding a putative full length, intact transposase. Secondary structure predictions and phylogenetic analyses confirm that maT elements belong to the mariner-Tc1 superfamily of transposons, but their intermediate sequence and predicted structural characteristics suggest that they belong to a unique clade, distinct from either mariner-like or Tc1-like elements.
Resumo:
alpha-Conotoxins that target the neuronal nicotinic acetylcholine receptor have a range of potential therapeutic applications and are valuable probes for examining receptor subtype selectivity. The three-dimensional structures of about half of the known neuronal specific alpha-conotoxins have now been determined and have a consensus fold containing a helical region braced by two conserved disulfide bonds. These disulfide bonds define the two-loop framework characteristic for alpha-conotoxins, CCXmCXnC, where loop 1 comprises four residues (m = 4) and loop 2 between three and seven residues (n = 3, 6 or 7). Structural studies, particularly using NMR spectroscopy have provided an insight into the role and spatial location of residues implicated in receptor binding and biological activity.
Resumo:
To better comprehend the structural and biochemical underpinnings of ion uptake across the gills of true freshwater crabs, we performed an ultrastructural, ultracytochemical and morphometric investigation, and kinetically characterized the Na(+), K(+)-ATPase, in posterior gill lamellae of Dilocarcinus pagei. Ultrastructurally, the lamellar epithelia are markedly asymmetrical: the thick, mushroom-shaped, proximal ionocytes contain elongate mitochondria (41% cell volume) associated with numerous (approximate to 14 mu m(2) membrane per mu m(3) cytoplasm), deep invaginations that house the Na(+), K(+)-ATPase, revealed ultracytochemically. Their apical surface is amplified (7.5 mu m(2) mu m(-2)) by stubby evaginations whose bases adjoin mitochondria below the subcuticular space. The apical membrane of the thin, distal ionocytes shows few evaginations (1.6 mu m(2) mu m(-2)), each surrounding a mitochondrion, abundant in the cytoplasm below the subcuticular space; basolateral invaginations and mitochondria are few. Fine basal cytoplasmic bridges project across the hemolymph space, penetrating into the thick ionocytes, suggesting ion movement between the epithelia. Microsomal Na(+), K(+)-ATPase specific activity resembles marine crabs but is approximate to 5-fold less than in species from fluctuating salinities, and freshwater shrimps, suggesting ion loss compensation by strategies other than Na(+) uptake. Enzyme apparent K(+) affinity attains 14-fold that of marine crabs, emphasizing the relevance of elevated K(+) affinity to the conquest of fresh water. Western blotting and biphasic ouabain inhibition disclose two alpha-subunit isoforms comprising distinct functional isoenzymes. While enzyme activity is not synergistically stimulated by NH(4)(+) and K(+), each increases affinity for the other, possibly assuring appropriate intracellular K(+) concentrations. These findings reveal specific structural and biochemical adaptations that may have allowed the establishment of the Brachyura in fresh water. J. Exp. Zool. 313A:508-523, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
The pocilloporin Rtms5 and an engineered variant Rtms5(H146S) undergo distinct color transitions (from blue to red to yellow to colorless) in a pH-dependent manner. pK(a) values of 4.1 and 3.2 were determined for the blue (absorption lambda(max), 590 nm) to yellow (absorption lambda(max), similar to 453 nm) transitions of Rtms5 and Rtms5H(146). The pK(a) for the blue-yellow transition of Rtms5H(146S) increased by 1.4 U in the presence of 0.1 M KI, whereas the pK(a) for the same transition of Rtms5 was relatively insensitive to added halides. To understand the structural basis for these observations, we have determined to 2.0 A resolution the crystal structure of a yellow form of Rtms5(H146S) at pH 3.5 in the presence of iodide. Iodide was found occupying a pocket in the structure with a pH of 3.5, forming van der Waals contacts with the tyrosyl moiety of the chromophore. Elsewhere, it was determined that this pocket is occupied by a water molecule in the Rtms5(H141S) structure (pH 8.0) and by the side chain of histidine 146 in the wild-type Rtms5 structure. Collectively, our data provide an explanation for the observed linkage between color transitions for Rtms5(H146S) and binding to halides.
Resumo:
DsbA, a 21-kDa protein from Escherichia coli, is a potent oxidizing disulfide catalyst required for disulfide bond formation in secreted proteins. The active site of DsbA is similar to that of mammalian protein disulfide isomerases, and includes a reversible disulfide bond formed from cysteines separated by two residues (Cys3O-Pro31-His32-Cys33). Unlike most protein disulfides, the active-site disulfide of DsbA is highly reactive and the oxidized form of DsbA is much less stable than the reduced form at physiological pH. His32, one of the two residues between the active-site cysteines, is critical to the oxidizing power of DsbA and to the relative instability of the protein in the oxidized form. Mutation of this single residue to tyrosine, serine, or leucine results in a significant increase in stability (of similar to 5-7 kcal/mol) of the oxidized His32 variants relative to the oxidized wild-type protein. Despite the dramatic changes in stability, the structures of all three oxidized DsbA His32 Variants are very similar to the wild-type oxidized structure, including conservation of solvent atoms near the active-site residue, Cys3O. These results show that the His32 residue does not exert a conformational effect on the structure of DsbA. The destabilizing effect of His32 on oxidized DsbA is therefore most likely electrostatic in nature.
Resumo:
Conotoxins are small, cysteine-rich peptides isolated from the venom of Conus spp. of predatory marine snails, which selectively target specific receptors and ion channels critical to the functioning of the neuromuscular system. alpha-Conotoxins PnIA and PnIB are both 16-residue peptides (differing in sequence at only two positions) isolated from the molluscivorous snail Conus pennaceus. In contrast to the muscle-selective alpha-conotoxin GI from Conus geographus, PnIA and PnIB block the neuronal nicotinic acetylcholine receptor (nAChR). Here, we describe the crystal structure of PnIB, solved at a resolution of 1.1 Angstrom and phased using the Shake-and-Bake direct methods program. PnIB crystals are orthorhombic and belong to the space group P2(1)2(1)2(1) with the following unit cell dimensions: a = 14.6 Angstrom, b = 26.1 Angstrom, and c = 29.2 Angstrom. The final refined structure of alpha-conotoxin PnIB includes all 16 residues plus 23 solvent molecules and has an overall R-factor of 14.7% (R-free of 15.9%). The crystal structures of the alpha-conotoxins PnIB and PnIA are solved from different crystal forms, with different solvent contents. Comparison of the structures reveals them to be very similar, showing that the unique backbone and disulfide architecture is not strongly influenced by crystal lattice constraints or solvent interactions. This finding supports the notion that this structural scaffold is a rigid support for the presentation of important functional groups. The structures of PnIB and PnIA differ in their shape and surface charge distribution from that of GI.
Resumo:
Galactoglucomannan (GGM) from cultures of Nicotiana plumbaginifolia has Man:Glc:Gal:Ara:Xyl in 1.0:1.1:1.0:0.1:0.04 ratio. Linkage analysis contained 4- and 4,6-Manp, 4-Glcp, terminal Galp and 2-Galp, small amounts and terminal Arap and terminal Xylp, and similar to 0.03 mol acetyl per mol of glucosyl residue. Treatment with alpha- and beta-D-galactosidases showed that the majority of the side-chains were either single Galp-alpha-(1 --> residues or the disaccharide Galp-beta-(1 --> 2)-Galp-alpha-(1 --> linked to O-6 of the 4-Manp residues of the glucomannan backbone. Analysis of the oligosaccharides generated by endo-(1 --> 4)-beta-mannanase digestion confirmed that the GGM comprises a backbone of predominantly alternating --> 4)-D-Manp-beta-(1 --> and --> Lt)-D-Glcp-beta-(1 --> branched at O-6 of 65% of the 4-Manp residues. The major oligosaccharide identified was D-Glcp-beta-(1 --> 4)-[D-Galp-beta-(1 --> 2)-D-Galp-alpha-(1 --> 6)]-D-Manp-beta-(1 --> 4)-D-Glcp-beta-(I --> 4)-[D-Galp-alpha-(1 --> 6)]-D-Manp-beta-(1 --> (27%), and most of the other oligosaccharides produced in significant quantities were based on this structure. (C) 1997 Elsevier Science Ltd.
Resumo:
Different banana cultivars were used to investigate the influences of starch granule structure and hydrolases on degradation. The highest degrees of starch degradation were observed in dessert bananas during ripening. Scanning electron microscopy images revealed smooth granule surface in the green stage in all cultivars, except for Mysore. The small and round granules were preferentially degraded in all of the cultivars. Terra demonstrated a higher degree of crystallinity and a short amylopectin chain length distribution, resulting in high starch content in the ripe stage. Amylose content and the crystallinity index were more strongly correlated than the distribution of amylopectin branch chain lengths in banana starches. alpha- and beta-amylase activities were found in both forms, soluble in the pulp and associated with the starch granule. Starch-phosphorylase was not found in Mysore. On the basis of the profile of alpha-amylase in vitro digestion and the structural characteristics, it could be concluded that the starch of plantains has an arrangement of granules more resistant to enzymes than the starch of dessert bananas.
Resumo:
Chagas` disease, caused by Trypanosoma cruzi, is an inflammatory disorder leading to chronic Chagas cardiomyopathy (CCC). Only one third of T cruzi-infected individuals progress to CCC while the others are considered asymptomatic (ASY). The human inhibitory kappa B-like gene (KBLINFKBIL1), homologous to the I kappa B family of proteins that regulate the NF kappa B family of transcription factors, is suggested as a putative inhibitor of NFKB. We investigated two functional polymorphisms, -62A/T and -262A/G, in the promoter of IKBL by PCR-RFLP analysis in 169 patients with CCC and 76 ASY. Genotype distributions for both -62A/T and -262A/G differed between the CCC and ASY (X-2 = 7.3; P = 0.025 and X-2 = 6.8; P = 0.03, respectively). Subjects, homozygous for the -62A allele, had three-fold risk of developing CCC compared with those carrying the TT genotype (P = 0.0095; Odds Ratio [OR] = 2.9; [95% CI 1.2-7.3]). Similar trend was observed for the -262A homozygotes (P = 0.005; OR = 2.7 [95% CI 1.3-6.0]. The haplotype -262A -62A was prevalent in patients with CCC (40% versus 24%; OR 2.1 [95% C1 1.4-3.3j; Pc = 0.00 14). The I kappa BL locus itself or another critical gene in this region may confer susceptibility to the development of CCC. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The role of alpha-tocopherol during nephrogenesis was investigated in rats subjected to maternal undernutrition, which reduces the number of nephrons. alpha-tocopherol (350 mg/kg, p.o.) was administered daily to well-nourished or malnourished Wistar dams during pregnancy, or to prenatal undernourished rats during lactation. The kidneys of 1- and 25-day-old offspring were removed to evaluate expression of angiotensin II (Ang II) and to correlate this with expression of proliferating cell nuclear antigen, alpha-smooth muscle actin, fibronectin and vimentin in the glomeruli and tubulointerstitial space. One-day-old prenatally undernourished rats had reduced expression of Ang II and of kidney development markers, and presented with an enlarged nephrogenic zone. Maternal administration of alpha-tocopherol restored the features of normal kidney development in undernourished rats. Twenty-five-day-old prenatally undernourished progeny had fewer glomeruli than the control group. Conversely, animals from mothers that received alpha-tocopherol during lactation presented with the same number of glomeruli and the same glomerular morphometrical profile as the control group. Analyzing the levels of thiobarbituric acid reactive substances in the liver in conjunction with kidney development markers, it is plausible that alpha-tocopherol had antioxidant and non-antioxidant actions. This study provides evidence that alpha-tocopherol treatment restored Ang II expression, and subsequently restored renal structural development.
Resumo:
p73 has recently been identified as a structural and functional homolog of the tumor suppressor protein p53. Overexpression of p53 activates transcription of p53 effector genes, causes growth inhibition and induced apoptosis. We describe here the effects of a tumor-derived truncated transcript of p73 alpha (p73 Delta exon2) on p53 function and on cell death. This transcript, which lacks the acidic N-terminus corresponding to the transactivation domain of p53, was initially detected in a neuroblastoma cell line. Overexpression of p73 Delta exon2 partially protects lymphoblastoid cells against apoptosis induced by anti-Fas antibody or cisplatin. By cotransfecting p73 Delta exon2 with wild-type p53 in the p53 null line Saos 2, we found that this truncated transcript reduces the ability of wild-type p53 to promote apoptosis. This anti-apoptotic effect was also observed when p73 Delta exon2 was co-transfected with full-length p73 (p73 alpha). This was further substantiated by suppression of p53 transactivation of the effector gene p21-Waf1 in p73 Delta exon2 transfected cells and by inhibition of expression of a reporter gene under the control of the p53 promoter. Thus, this truncated form of p73 can act as a dominant-negative agent towards transactivation by p53 and p73 alpha, highlighting the potential implications of these findings for p53 signaling pathway. Furthermore, we demonstrate the existence of a p73 Delta exon2 transcript in a very significant proportion (46%) of breast cancer cell lines. However, a large spectrum of normal and malignant tissues need to be surveyed to determine whether this transdominant p73 variant occurs in a tumor-specific manner.
Resumo:
When smooth muscle cells are enzyme-dispersed from tissues they lose their original filament architecture and extracellular matrix surrounds. They then reorganize their structural proteins to accommodate a 2-D growth environment when seeded onto culture dishes. The aim of the present study was to determine the expression and reorganization of the structural proteins in rabbit aortic smooth muscle cells seeded into 3-D collagen gel and Matrigel (a basement membrane matrix). It was shown that smooth muscle cells seeded in both gels gradually reorganize their structural proteins into an architecture similar to that of their in vivo counterparts. At the same time, a gradual decrease in levels of smooth muscle-specific contractile proteins (mainly smooth muscle myosin heavy chain-2) and an increase in p-nonmuscle actin occur, independent of both cell growth and extracellular matrix components. Thus, smooth muscle cells in 3-D extracellular matrix culture and in vivo have a similar filament architecture in which the contractile proteins such as actin, myosin, and alpha -actinin are organized into longitudinally arranged myofibrils and the vimentin-containing intermediate filaments form a meshed cytoskeletal network, However, the myofibrils reorganized in vitro contain less smooth muscle-specific and more nonmuscle contractile proteins. (C) 2001 Academic Press.
Resumo:
The contribution of the UV component of sunlight to the development of skin cancer is widely acknowledged, although the molecular mechanisms that are disrupted by UV radiation (UVR) resulting in the loss of normal growth controls of the epidermal stem cell keratinocytes and melanocytes is still poorly understood. alpha-Melanocyte stimulating hormone (alpha-MSH), acting via its receptor MC1, has a key role in skin pigmentation and the melanizing response after exposure to UVR. The cell cycle inhibitor p16/CDKN2A also appears to have an important function in a cell cycle checkpoint response in skin after exposure to UVR. Both of these genes have been identified as risk factors in skin cancer, MC1R variants are associated with increased risk to both melanoma and nonmelanoma skin cancers, and p16/CDKN2A with increased risk of melanoma. Here we demonstrate that the increased expression of p16 after exposure to sub-erythemal doses of UVR is potentiated by alpha-MSH, a ligand for MC1R, and this effect is mimicked by cAMP, the intracellular mediator of alpha-MSH signaling via the MC1 receptor. This link between p16 and MC1R may provide a molecular basis for the increased skin cancer risk associated with MC1R polymorphisms.
Resumo:
MS/MS data derived from the [M-H](-) ions of desulfated caerulein peptides provide (i) sequencing information from a combination of alpha, beta and gamma backbone cleavages, and (ii) identification of specific amino acid side chains by side-chain cleavages [e.g. Ser (-CH2O), Thr (-CH3CHO) and Asp (-H2O)] (fragmentations having no counterparts in positive ion spectra). In addition, delta and/or gamma backbone cleavage ions from Asp residues identify the position of these residues in the peptide. In contrast, neither delta nor gamma cleavage ions are observed from either the Gln2 residue nor from Phe residues. Full structural information can be obtained from a consideration of the positive and negative ion MS/MS data in concert. Copyright (C) 2002 John Wiley Sons, Ltd.