181 resultados para alligator
Resumo:
This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.
Resumo:
This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.
Resumo:
Stomach contents analysis (SCA) provides a snap-shot observation of a consumer's diet. Interpretation of SCA data can be complicated by many factors, including variation in gastric residence times and digestion rates among prey taxa. Although some SCA methods are reported to efficiently remove all stomach contents, the effectiveness of these techniques has rarely been tested for large irregular shaped prey with hard exoskeletons. We used a controlled feeding trial to estimate gastric residency time and decomposition rate of a large crustacean prey item, the Blue Crab (Callinectes sapidus), which is consumed by American Alligators (Alligator mississippiensis), an abundant apex predator in coastal habitats of the southeastern United States. The decomposition rate of C. sapidus in the stomachs of A. mississippiensis followed a predictable pattern, and some crab pieces remained in stomachs for at least 14 days. We also found that certain portions of C. sapidus were prone to becoming caught within the stomach or esophagus, meaning not all crab parts are consistently recovered using gastric lavage techniques. However, because the state of decomposition of crabs was predictable, it is possible to estimate time since consumption for crabs recovered from wild alligators. This information, coupled with a detailed understanding of crab distributions and alligator movement tactics could help elucidate patterns of cross-ecosystem foraging by the American Alligator in coastal habitats.
Resumo:
Top predators can have large effects on community and population dynamics but we still know relatively little about their roles in ecosystems and which biotic and abiotic factors potentially affect their behavioral patterns. Understanding the roles played by top predators is a pressing issue because many top predator populations around the world are declining rapidly yet we do not fully understand what the consequences of their potential extirpation could be for ecosystem structure and function. In addition, individual behavioral specialization is commonplace across many taxa, but studies of its prevalence, causes, and consequences in top predator populations are lacking. In this dissertation I investigated the movement, feeding patterns, and drivers and implications of individual specialization in an American alligator (Alligator mississippiensis ) population inhabiting a dynamic subtropical estuary. I found that alligator movement and feeding behaviors in this population were largely regulated by a combination of biotic and abiotic factors that varied seasonally. I also found that the population consisted of individuals that displayed an extremely wide range of movement and feeding behaviors, indicating that individual specialization is potentially an important determinant of the varied roles of alligators in ecosystems. Ultimately, I found that assuming top predator populations consist of individuals that all behave in similar ways in terms of their feeding, movements, and potential roles in ecosystems is likely incorrect. As climate change and ecosystem restoration and conservation activities continue to affect top predator populations worldwide, individuals will likely respond in different and possibly unexpected ways.
Resumo:
Stable isotope analysis has become a standard ecological tool for elucidating feeding relationships of organisms and determining food web structure and connectivity. There remain important questions concerning rates at which stable isotope values are incorporated into tissues (turnover rates) and the change in isotope value between a tissue and a food source (discrimination values). These gaps in our understanding necessitate experimental studies to adequately interpret field data. Tissue turnover rates and discrimination values vary among species and have been investigated in a broad array of taxa. However, little attention has been paid to ectothermic top predators in this regard. We quantified the turnover rates and discrimination values for three tissues (scutes, red blood cells, and plasma) in American alligators (Alligator mississippiensis). Plasma turned over faster than scutes or red blood cells, but turnover rates of all three tissues were very slow in comparison to those in endothermic species. Alligator δ15N discrimination values were surprisingly low in comparison to those of other top predators and varied between experimental and control alligators. The variability of δ15N discrimination values highlights the difficulties in using δ15N to assign absolute and possibly even relative trophic levels in field studies. Our results suggest that interpreting stable isotope data based on parameter estimates from other species can be problematic and that large ectothermic tetrapod tissues may be characterized by unique stable isotope dynamics relative to species occupying lower trophic levels and endothermic tetrapods.
Resumo:
Par Pond is a man-made 1120 ha cooling reservoir located on the Savannah River Site near Aiken, South Carolina. From 1972-1978 a detailed study on the status of the alligator in Par Pond was conducted by Tom Murphy (unpub. MS thesis Univ. of GA, 1977). Murphy estimated that approximately 110 alligators inhabited Par Pond with an adult (> 1.8 m) to juvenile (< 1.8 m) ratio of (1.8:1), an overall sex ratio of 3.2:1, and an average of only 2.3 nests/yr. The purpose of this study (1986-1989) was to determine the current population size and structure, determine how the population has changed in the last 15 years and to examine growth and survival of juvenile alligators. Data were collected by monthly night-time eyeshine counts aerial surveys, capturing animals, and locating and following the fate of nests. There was a strong positive correlation between water temperature and the number of alligators observed during eyeshine counts. Both eyeshine counts and aerial surveys were highest in spring and varied seasonally. A total of 184 different non-hatchling and 157 hatchling alligators were captured between May 1986 and November 1988. Population estimates and size distributions based on capture data indicate that over the last 15 years the population has increased from approximately 110 to 200 alligators, and the size distribution has shifted from one dominated by large adults to one that has a higher proportion of juveniles. The current sex ratio (2.6:1) is not significantly different from that reported by Murphy (1977, 3.2:1). However, the average number of nests/yr has increased from 2.3 to 4.0. Data on juvenile growth and survival show that the growth rate of hatchlings (32.9 cm/yr total length) is greater than that of animals age 1-3 (21.6 cm/yr total length) and survival of all ages is variable between years and between clutches. Results from this study indicate that from 1972-988 the population has increased ac an average exponential rate of 6 % per year. If conditions in Par Pond do not change, the population size should continue to increase.