929 resultados para alkali metals
Resumo:
We investigated the effects of uninephrectomy (UNX) in 6-week-old male and female rats on blood pressure (BP), renal sodium handling, salt sensitivity, oxidative stress, and renal injury over 18 months postsurgery, studying control sham-operated and UNX-operated rats at 6, 12, and 18 months postsurgery, evaluating their renal sodium handling, BP, urinary isoprostanes, N-acetyl-β-D-glucosaminidase, and proteinuria before and after a 2-week high-salt intake period. At 18 months, plasma variables were measured and kidney samples were taken for the analysis of renal morphology and tissue variables. BP was increased at 6 months in male UNX rats versus controls and at 12 and 18 months in both male and female UNX rats and was increased in male versus female UNX groups at 18 months. UNX did not affect water and sodium excretion under basal conditions and after the different test in male and female rats at different ages. However, the renal function curve was shifted to the right in both male and female UNX rats. High-salt intake increased BP in both UNX groups at 6, 12, and 18 months and in the female control group at 18 months, and it increased proteinuria, N-acetyl-β-D-glucosaminidase, and isoprostanes in both UNX groups throughout the study. Renal lesions at 18 months were more severe in male versus female UNX rats. In summary, long-term UNX increased the BP, creatinine, proteinuria, pathological signs of renal injury, and salt sensitivity. Earlier BP elevation was observed and morphological lesions were more severe in male than in female UNX rats.
Resumo:
Using an extended-random-phase-approximation sum-rule technique, we have investigated the bulk-plasmon dispersion relation, incorporating in a simple way exchange and correlation effects within the jellium model. The results obtained are compared with recent experimental findings. The key role played by exchange and correlation effects in improving the agreement between theory and experiment is stressed. The static polarizability has also been calculated as a function of q. The formulas can be easily modified to incorporate band-structure effects (through an intraband electron effective mass) and core-polarization effects (through a static dielectric constant).
Resumo:
Nonlocal approximations for the electronic exchange and correlation effects are used to compute, within density-functional theory, the polarizability and surface-plasma frequencies of small jelliumlike alkali-metal clusters. The results are compared with those obtained using the local-density approximation and with available experimental data, showing the relevance of these effects in obtaining an accurate description of the surface response of metallic clusters.
Resumo:
The average multipole surface-plasmon energy for simple metals, as well as that of ordinary surface and bulk plasmons, is obtained using energy-weighted moments of the electronic response to sufficiently general external perturbations. A local approximation of exchange and correlation effects is used within a jellium model. Band-structure effects are incorporated through an effective electronic mass. Taking advantage of the transparency of the method, we analyze under what circumstances such modes might be observable. It is shown that due to an interplay between Coulomb and kinetic energies, the multipole modes become unobservable for increasing values of the transferred momentum (q) parallel to the surface. The value of q at which the multipole mode becomes unobservable is much smaller than the cutoff value for Landau damping. The effect of the electronic surface diffuseness is also analyzed. We compare our results with previous density-functional calculations and with recent experimental data for Na, K, and Cs.
Resumo:
We investigate the spreading of 4He droplets on alkali-metal surfaces at zero temperature, within the frame of finite range density-functional theory. The equilibrium configurations of several 4HeN clusters and their asymptotic trend with increasing particle number N, which can be traced to the wetting behavior of the quantum fluid, are examined for nanoscopic droplets. We discuss the size effects inferring that the asymptotic properties of large droplets correspond to those of the prewetting film.
Resumo:
We present a complete calculation of the structure of liquid 4He confined to a concave nanoscopic wedge, as a function of the opening angle of the walls. This is achieved within a finite-range density functional formalism. The results here presented, restricted to alkali metal substrates, illustrate the change in meniscus shape from rather broad to narrow wedges on weak and strong alkali adsorbers, and we relate this change to the wetting behavior of helium on the corresponding planar substrate. As the wedge angle is varied, we find a sequence of stable states that, in the case of cesium, undergo one filling and one emptying transition at large and small openings, respectively. A computationally unambiguous criterion to determine the contact angle of 4He on cesium is also proposed.
Resumo:
In a recent paper A. S. Johal and D. J. Dunstan [Phys. Rev. B 73, 024106 (2006)] have applied multivariate linear regression analysis to the published data of the change in ultrasonic velocity with applied stress. The aim is to obtain the best estimates for the third-order elastic constants in cubic materials. From such an analysis they conclude that uniaxial stress data on metals turns out to be nearly useless by itself. The purpose of this comment is to point out that by a proper analysis of uniaxial stress data it is possible to obtain reliable values of third-order elastic constants in cubic metals and alloys. Cu-based shape memory alloys are used as an illustrative example.
Resumo:
The monitoring of heavy metal concentrations in areas under intensive agriculture is essential for the agricultural sustainability and food safety. This paper evaluates the total contents of heavy metals in soils and mango trees in orchards of different ages (6, 7, 8, 9, 10, 11, 14, 16, 17, 19, and 26 years) in Petrolina, Pernambuco, Brazil. Soil samples were taken from the layers 0-20 cm and 20-40 cm, and mango leaves were collected in the growth stage. Areas of native vegetation (Caatinga) adjacent to the cultivated areas were used for comparison. The total concentrations of heavy metals (Cu, Cr, Fe, Zn, Mn, Ni, and Pb) were determined in soils and leaves. In general, mango cultivation led to Cu and Zn accumulation in the soil surface and to a reduction in the contents of Ni, Pb, Mn, and Fe in surface and subsurface. Since contamination by Cu, Zn, and Cr was detected, these areas must be monitored to prevent negative environmental impacts. For instance, the presence of Cr in mango tree leaves indicates the need to investigate the source of the element in these orchards. The management strategies of the different companies led to deficiency or excess of some metals in the evaluated areas. However, the Fe and Mn levels were adequate for the mineral nutrition of mango in all areas.
Resumo:
The response function of alkali-metal clusters, modeled as jellium spheres, to dipole (L=1) and quadrupole (L=2) spin-dependent fields is obtained within the time-dependent local-spin-density approximation of density-functional theory. We predict the existence of low-energy spin modes of surface type, which are identified from the strength function. Their collectivity and evolution with size are discussed.
Resumo:
Selostus: Kasvien raskasmetallien otto ilmasta ja saastuneesta maasta
Resumo:
The lack of a standard method to regulate heavy metal determination in Brazilian fertilizers and the subsequent use of several digestion methods have produced variations in the results, hampering interpretation. Thus, the aim of this study was to compare the effectiveness of three digestion methods for determination of metals such as Cd, Ni, Pb, and Cr in fertilizers. Samples of 45 fertilizers marketed in northeastern Brazil were used. A fertilizer sample with heavy metal contents certified by the US National Institute of Standards and Technology (NIST) was used as control. The following fertilizers were tested: rock phosphate; organo-mineral fertilizer with rock phosphate; single superphosphate; triple superphosphate; mixed N-P-K fertilizer; and fertilizer with micronutrients. The substances were digested according to the method recommended by the Ministry for Agriculture, Livestock and Supply of Brazil (MAPA) and by the two methods 3051A and 3052 of the United States Environmental Protection Agency (USEPA). By the USEPA method 3052, higher portions of the less soluble metals such as Ni and Pb were recovered, indicating that the conventional digestion methods for fertilizers underestimate the total amount of these elements. The results of the USEPA method 3051A were very similar to those of the method currently used in Brazil (Brasil, 2006). The latter is preferable, in view of the lower cost requirement for acids, a shorter digestion period and greater reproducibility.
Resumo:
Soils under natural conditions have heavy metals in variable concentrations and there may be an increase in these elements as a result of the agricultural practices adopted. Transport of heavy metals in soil mainly occurs in forms dissolved in the soil solution or associated with solid particles, water being their main means of transport. In this context, the aim of this study was to evaluate the heavy metal and micronutrient content in the soil and in the grapevine plant and fruit under different irrigation strategies. The experiment was carried out in Petrolina, PE, Brazil. The treatments consisted of three irrigation strategies: full irrigation (FI), regulated deficit irrigation (RDI), and deficit irrigation (DI). During the period of grape maturation, soil samples were collected at the depths of 0-10, 10-20, 20-40, 40-60, and 60-80 cm. In addition, leaves were collected at the time of ripening of the bunches, and berries were collected at harvest. Thus, the heavy metal and micronutrient contents were determined in the soil, leaves, and berries. The heavy metal and micronutrient contents in the soil showed a stochastic pattern in relation to the different irrigation strategies. The different irrigation strategies did not affect the heavy metal and micronutrient contents in the vine leaves, and they were below the contents considered toxic to the plant. In contrast, the greater availability of water in the FI treatment favored a greater Cu content in the grape, which may be a risk to vines, causing instability and turbidity. Thus, adoption of deficit irrigation is recommended so as to avoid compromising the stability of tropical wines of the Brazilian Northeast.
Resumo:
The influence of different parts of the interaction potential on the microscopic behavior of simple liquid metals is investigated by molecular dynamics simulation. The role of the soft-core repulsive, short-range attractive, and long-range oscillatory forces on the properties of liquid lithium close to the triple point is analyzed by comparing the results from simulations of identical systems but truncating the potential at different distances. Special attention is paid to dynamic collective properties such as the dynamic structure factors, transverse current correlation functions, and transport coefficients. It is observed that, in general, the effects of the short-range attractive forces are important. On the contrary, the influence of the oscillatory long-range interactions is considerably less, being the most pronounced for the dynamic structure factor at long wavelengths. The results of this work suggest that the influence of the attractive forces becomes less significant when temperature and density increase.