943 resultados para algebraic laws


Relevância:

20.00% 20.00%

Publicador:

Resumo:

La hiérarchie de Wagner constitue à ce jour la plus fine classification des langages ω-réguliers. Par ailleurs, l'approche algébrique de la théorie de langages formels montre que ces ensembles ω-réguliers correspondent précisément aux langages reconnaissables par des ω-semigroupes finis pointés. Ce travail s'inscrit dans ce contexte en fournissant une description complète de la contrepartie algébrique de la hiérarchie de Wagner, et ce par le biais de la théorie descriptive des jeux de Wadge. Plus précisément, nous montrons d'abord que le degré de Wagner d'un langage ω-régulier est effectivement un invariant syntaxique. Nous définissons ensuite une relation de réduction entre ω-semigroupes pointés par le biais d'un jeu infini de type Wadge. La collection de ces structures algébriques ordonnée par cette relation apparaît alors comme étant isomorphe à la hiérarchie de Wagner, soit un quasi bon ordre décidable de largeur 2 et de hauteur ω. Nous exposons par la suite une procédure de décidabilité de cette hiérarchie algébrique : on décrit une représentation graphique des ω-semigroupes finis pointés, puis un algorithme sur ces structures graphiques qui calcule le degré de Wagner de n'importe quel élément. Ainsi le degré de Wagner de tout langage ω-régulier peut être calculé de manière effective directement sur son image syntaxique. Nous montrons ensuite comment construire directement et inductivement une structure de n''importe quel degré. Nous terminons par une description détaillée des invariants algébriques qui caractérisent tous les degrés de cette hiérarchie. Abstract The Wagner hierarchy is known so far to be the most refined topological classification of ω-rational languages. Also, the algebraic study of formal languages shows that these ω-rational sets correspond precisely to the languages recognizable by finite pointed ω-semigroups. Within this framework, we provide a construction of the algebraic counterpart of the Wagner hierarchy. We adopt a hierarchical game approach, by translating the Wadge theory from the ω-rational language to the ω-semigroup context. More precisely, we first show that the Wagner degree is indeed a syntactic invariant. We then define a reduction relation on finite pointed ω-semigroups by means of a Wadge-like infinite two-player game. The collection of these algebraic structures ordered by this reduction is then proven to be isomorphic to the Wagner hierarchy, namely a well-founded and decidable partial ordering of width 2 and height $\omega^\omega$. We also describe a decidability procedure of this hierarchy: we introduce a graph representation of finite pointed ω-semigroups allowing to compute their precise Wagner degrees. The Wagner degree of every ω-rational language can therefore be computed directly on its syntactic image. We then show how to build a finite pointed ω-semigroup of any given Wagner degree. We finally describe the algebraic invariants characterizing every Wagner degree of this hierarchy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fuzzy set theory and Fuzzy logic is studied from a mathematical point of view. The main goal is to investigatecommon mathematical structures in various fuzzy logical inference systems and to establish a general mathematical basis for fuzzy logic when considered as multi-valued logic. The study is composed of six distinct publications. The first paper deals with Mattila'sLPC+Ch Calculus. THis fuzzy inference system is an attempt to introduce linguistic objects to mathematical logic without defining these objects mathematically.LPC+Ch Calculus is analyzed from algebraic point of view and it is demonstratedthat suitable factorization of the set of well formed formulae (in fact, Lindenbaum algebra) leads to a structure called ET-algebra and introduced in the beginning of the paper. On its basis, all the theorems presented by Mattila and many others can be proved in a simple way which is demonstrated in the Lemmas 1 and 2and Propositions 1-3. The conclusion critically discusses some other issues of LPC+Ch Calculus, specially that no formal semantics for it is given.In the second paper the characterization of solvability of the relational equation RoX=T, where R, X, T are fuzzy relations, X the unknown one, and o the minimum-induced composition by Sanchez, is extended to compositions induced by more general products in the general value lattice. Moreover, the procedure also applies to systemsof equations. In the third publication common features in various fuzzy logicalsystems are investigated. It turns out that adjoint couples and residuated lattices are very often present, though not always explicitly expressed. Some minor new results are also proved.The fourth study concerns Novak's paper, in which Novak introduced first-order fuzzy logic and proved, among other things, the semantico-syntactical completeness of this logic. He also demonstrated that the algebra of his logic is a generalized residuated lattice. In proving that the examination of Novak's logic can be reduced to the examination of locally finite MV-algebras.In the fifth paper a multi-valued sentential logic with values of truth in an injective MV-algebra is introduced and the axiomatizability of this logic is proved. The paper developes some ideas of Goguen and generalizes the results of Pavelka on the unit interval. Our proof for the completeness is purely algebraic. A corollary of the Completeness Theorem is that fuzzy logic on the unit interval is semantically complete if, and only if the algebra of the valuesof truth is a complete MV-algebra. The Compactness Theorem holds in our well-defined fuzzy sentential logic, while the Deduction Theorem and the Finiteness Theorem do not. Because of its generality and good-behaviour, MV-valued logic can be regarded as a mathematical basis of fuzzy reasoning. The last paper is a continuation of the fifth study. The semantics and syntax of fuzzy predicate logic with values of truth in ana injective MV-algerba are introduced, and a list of universally valid sentences is established. The system is proved to be semanticallycomplete. This proof is based on an idea utilizing some elementary properties of injective MV-algebras and MV-homomorphisms, and is purely algebraic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The regulation of speed limits in the US had been centralized at the federal level since 1974, until decisions were devolved to the states in 1995. However, the centralization debate has reemerged in recent years. Here, we conduct the first econometric analysis of the determinants of speed limit laws. By using economic, geographic and political variables, our results suggest that geography -which affects private mobility needs and preferences- is the main factor influencing speed limit laws. We also highlight the role played by political ideology, with Republican constituencies being associated with higher speed limits. Furthermore, we identify the presence of regional and time dependence effects. By contrast, poor road safety outcomes do not impede the enactment of high speed limits. Overall, we present the first evidence of the role played by geographical, ideological and regional characteristics, which provide us with a better understanding of the formulation of speed limit policies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis studies the properties and usability of operators called t-norms, t-conorms, uninorms, as well as many valued implications and equivalences. Into these operators, weights and a generalized mean are embedded for aggregation, and they are used for comparison tasks and for this reason they are referred to as comparison measures. The thesis illustrates how these operators can be weighted with a differential evolution and aggregated with a generalized mean, and the kinds of measures of comparison that can be achieved from this procedure. New operators suitable for comparison measures are suggested. These operators are combination measures based on the use of t-norms and t-conorms, the generalized 3_-uninorm and pseudo equivalence measures based on S-type implications. The empirical part of this thesis demonstrates how these new comparison measures work in the field of classification, for example, in the classification of medical data. The second application area is from the field of sports medicine and it represents an expert system for defining an athlete's aerobic and anaerobic thresholds. The core of this thesis offers definitions for comparison measures and illustrates that there is no actual difference in the results achieved in comparison tasks, by the use of comparison measures based on distance, versus comparison measures based on many valued logical structures. The approach has been highly practical in this thesis and all usage of the measures has been validated mainly by practical testing. In general, many different types of operators suitable for comparison tasks have been presented in fuzzy logic literature and there has been little or no experimental work with these operators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conservation laws in physics are numerical invariants of the dynamics of a system. In cellular automata (CA), a similar concept has already been defined and studied. To each local pattern of cell states a real value is associated, interpreted as the “energy” (or “mass”, or . . . ) of that pattern.The overall “energy” of a configuration is simply the sum of the energy of the local patterns appearing on different positions in the configuration. We have a conservation law for that energy, if the total energy of each configuration remains constant during the evolution of the CA. For a given conservation law, it is desirable to find microscopic explanations for the dynamics of the conserved energy in terms of flows of energy from one region toward another. Often, it happens that the energy values are from non-negative integers, and are interpreted as the number of “particles” distributed on a configuration. In such cases, it is conjectured that one can always provide a microscopic explanation for the conservation laws by prescribing rules for the local movement of the particles. The onedimensional case has already been solved by Fuk´s and Pivato. We extend this to two-dimensional cellular automata with radius-0,5 neighborhood on the square lattice. We then consider conservation laws in which the energy values are chosen from a commutative group or semigroup. In this case, the class of all conservation laws for a CA form a partially ordered hierarchy. We study the structure of this hierarchy and prove some basic facts about it. Although the local properties of this hierarchy (at least in the group-valued case) are tractable, its global properties turn out to be algorithmically inaccessible. In particular, we prove that it is undecidable whether this hierarchy is trivial (i.e., if the CA has any non-trivial conservation law at all) or unbounded. We point out some interconnections between the structure of this hierarchy and the dynamical properties of the CA. We show that positively expansive CA do not have non-trivial conservation laws. We also investigate a curious relationship between conservation laws and invariant Gibbs measures in reversible and surjective CA. Gibbs measures are known to coincide with the equilibrium states of a lattice system defined in terms of a Hamiltonian. For reversible cellular automata, each conserved quantity may play the role of a Hamiltonian, and provides a Gibbs measure (or a set of Gibbs measures, in case of phase multiplicity) that is invariant. Conversely, every invariant Gibbs measure provides a conservation law for the CA. For surjective CA, the former statement also follows (in a slightly different form) from the variational characterization of the Gibbs measures. For one-dimensional surjective CA, we show that each invariant Gibbs measure provides a conservation law. We also prove that surjective CA almost surely preserve the average information content per cell with respect to any probability measure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let $X$ be a smooth complex algebraic variety. Morgan showed that the rational homotopy type of $X$ is a formal consequence of the differential graded algebra defined by the first term $E_{1}(X,W)$ of its weight spectral sequence. In the present work, we generalize this result to arbitrary nilpotent complex algebraic varieties (possibly singular and/or non-compact) and to algebraic morphisms between them. In particular, our results generalize the formality theorem of Deligne, Griffiths, Morgan and Sullivan for morphisms of compact Kähler varieties, filling a gap in Morgan"s theory concerning functoriality over the rationals. As an application, we study the Hopf invariant of certain algebraic morphisms using intersection theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fuzzy subsets and fuzzy subgroups are basic concepts in fuzzy mathematics. We shall concentrate on fuzzy subgroups dealing with some of their algebraic, topological and complex analytical properties. Explorations are theoretical belonging to pure mathematics. One of our ideas is to show how widely fuzzy subgroups can be used in mathematics, which brings out the wealth of this concept. In complex analysis we focus on Möbius transformations, combining them with fuzzy subgroups in the algebraic and topological sense. We also survey MV spaces with or without a link to fuzzy subgroups. Spectral space is known in MV algebra. We are interested in its topological properties in MV-semilinear space. Later on, we shall study MV algebras in connection with Riemann surfaces. In fact, the Riemann surface as a concept belongs to complex analysis. On the other hand, Möbius transformations form a part of the theory of Riemann surfaces. In general, this work gives a good understanding how it is possible to fit together different fields of mathematics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the paper Busaniche and Cignoli (2009) we presented a quasivariety of commutative residuated lattices, called NPc-lattices, that serves as an algebraic semantics for paraconsistent Nelson's logic. In the present paper we show that NPc-lattices form a subvariety of the variety of commutative residuated lattices, we study congruences of NPc-lattices and some subvarieties of NPc-lattices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper I analyze the difficult question of the truth of mature scientific theories by tackling the problem of the truth of laws. After introducing the main philosophical positions in the field of scientific realism, I discuss and then counter the two main arguments against realism, namely the pessimistic meta-induction and the abstract and idealized character of scientific laws. I conclude by defending the view that well-confirmed physical theories are true only relatively to certain values of the variables that appear in the laws.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work is to study the conservation laws of continuous means mechanics and also to extend the Hamiltonian method for these kind of systems in order to valid for non-potential operators through variational approach. Besides illustrating with various examples of mechanical applications we also introduce in this work the new technique in order to treat such problems as the non-potential problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is divided into two different parts. The first one provides a brief introduction to the fractal geometry with some simple illustrations in fluid mechanics. We thought it would be helpful to introduce the reader into this relatively new approach to mechanics that has not been sufficiently explored by engineers yet. Although in fluid mechanics, mainly in problems of percolation and binary flows, the use of fractals has gained some attention, the same is not true for solid mechanics, from the best of our knowledge. The second part deals with the mechanical behavior of thin wires subjected to very large deformations. It is shown that starting to a plausible conjecture it is possible to find global constitutive equations correlating geometrical end energy variables with the fractal dimension of the solid subjected to large deformations. It is pointed out the need to complement the present proposal with experimental work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Food production within the context of solidarity economy is an alternative way to offer employment and income for a significant part of the Brazilian population. The purpose of this study was to carry out a business diagnosis in order to evaluate the facilities, the production process and hygiene practices of seven solidarity economy enterprises located in the city of Novo Hamburgo, Southern Brazil, that work with food production and sales. Visits took place at the enterprises and a check-list was used to record data. Although food production happens in places with space and setting restrictions, it guarantees distinctive foods with aggregate value, where handlers follow the whole process, from raw materials selection to sales. Basic hygiene principles are followed, as they guarantee the production of food with quality, which contributes towards income generation for participating families. Specific laws that apply to the characteristics and needs of small-scale food production must be written in order to regulate solidarity economy enterprises.