950 resultados para akaike information criterion


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper proposes the use of the Bayes Factor to replace the Bayesian Information Criterion (BIC) as a criterion for speaker clustering within a speaker diarization system. The BIC is one of the most popular decision criteria used in speaker diarization systems today. However, it will be shown in this paper that the BIC is only an approximation to the Bayes factor of marginal likelihoods of the data given each hypothesis. This paper uses the Bayes factor directly as a decision criterion for speaker clustering, thus removing the error introduced by the BIC approximation. Results obtained on the 2002 Rich Transcription (RT-02) Evaluation dataset show an improved clustering performance, leading to a 14.7% relative improvement in the overall Diarization Error Rate (DER) compared to the baseline system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Most crash severity studies ignored severity correlations between driver-vehicle units involved in the same crashes. Models without accounting for these within-crash correlations will result in biased estimates in the factor effects. This study developed a Bayesian hierarchical binomial logistic model to identify the significant factors affecting the severity level of driver injury and vehicle damage in traffic crashes at signalized intersections. Crash data in Singapore were employed to calibrate the model. Model fitness assessment and comparison using Intra-class Correlation Coefficient (ICC) and Deviance Information Criterion (DIC) ensured the suitability of introducing the crash-level random effects. Crashes occurring in peak time, in good street lighting condition, involving pedestrian injuries are associated with a lower severity, while those in night time, at T/Y type intersections, on right-most lane, and installed with red light camera have larger odds of being severe. Moreover, heavy vehicles have a better resistance on severe crash, while crashes involving two-wheel vehicles, young or aged drivers, and the involvement of offending party are more likely to result in severe injuries.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a novel technique for segmenting an audio stream into homogeneous regions according to speaker identities, background noise, music, environmental and channel conditions. Audio segmentation is useful in audio diarization systems, which aim to annotate an input audio stream with information that attributes temporal regions of the audio into their specific sources. The segmentation method introduced in this paper is performed using the Generalized Likelihood Ratio (GLR), computed between two adjacent sliding windows over preprocessed speech. This approach is inspired by the popular segmentation method proposed by the pioneering work of Chen and Gopalakrishnan, using the Bayesian Information Criterion (BIC) with an expanding search window. This paper will aim to identify and address the shortcomings associated with such an approach. The result obtained by the proposed segmentation strategy is evaluated on the 2002 Rich Transcription (RT-02) Evaluation dataset, and a miss rate of 19.47% and a false alarm rate of 16.94% is achieved at the optimal threshold.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper proposes a practical prediction procedure for vertical displacement of a Rotarywing Unmanned Aerial Vehicle (RUAV) landing deck in the presence of stochastic sea state disturbances. A proper time series model tending to capture characteristics of the dynamic relationship between an observer and a landing deck is constructed, with model orders determined by a novel principle based on Bayes Information Criterion (BIC) and coefficients identified using the Forgetting Factor Recursive Least Square (FFRLS) method. In addition, a fast-converging online multi-step predictor is developed, which can be implemented more rapidly than the Auto-Regressive (AR) predictor as it requires less memory allocations when updating coefficients. Simulation results demonstrate that the proposed prediction approach exhibits satisfactory prediction performance, making it suitable for integration into ship-helicopter approach and landing guidance systems in consideration of computational capacity of the flight computer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study considered the problem of predicting survival, based on three alternative models: a single Weibull, a mixture of Weibulls and a cure model. Instead of the common procedure of choosing a single “best” model, where “best” is defined in terms of goodness of fit to the data, a Bayesian model averaging (BMA) approach was adopted to account for model uncertainty. This was illustrated using a case study in which the aim was the description of lymphoma cancer survival with covariates given by phenotypes and gene expression. The results of this study indicate that if the sample size is sufficiently large, one of the three models emerge as having highest probability given the data, as indicated by the goodness of fit measure; the Bayesian information criterion (BIC). However, when the sample size was reduced, no single model was revealed as “best”, suggesting that a BMA approach would be appropriate. Although a BMA approach can compromise on goodness of fit to the data (when compared to the true model), it can provide robust predictions and facilitate more detailed investigation of the relationships between gene expression and patient survival. Keywords: Bayesian modelling; Bayesian model averaging; Cure model; Markov Chain Monte Carlo; Mixture model; Survival analysis; Weibull distribution

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Spatial data are now prevalent in a wide range of fields including environmental and health science. This has led to the development of a range of approaches for analysing patterns in these data. In this paper, we compare several Bayesian hierarchical models for analysing point-based data based on the discretization of the study region, resulting in grid-based spatial data. The approaches considered include two parametric models and a semiparametric model. We highlight the methodology and computation for each approach. Two simulation studies are undertaken to compare the performance of these models for various structures of simulated point-based data which resemble environmental data. A case study of a real dataset is also conducted to demonstrate a practical application of the modelling approaches. Goodness-of-fit statistics are computed to compare estimates of the intensity functions. The deviance information criterion is also considered as an alternative model evaluation criterion. The results suggest that the adaptive Gaussian Markov random field model performs well for highly sparse point-based data where there are large variations or clustering across the space; whereas the discretized log Gaussian Cox process produces good fit in dense and clustered point-based data. One should generally consider the nature and structure of the point-based data in order to choose the appropriate method in modelling a discretized spatial point-based data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis proposes three novel models which extend the statistical methodology for motor unit number estimation, a clinical neurology technique. Motor unit number estimation is important in the treatment of degenerative muscular diseases and, potentially, spinal injury. Additionally, a recent and untested statistic to enable statistical model choice is found to be a practical alternative for larger datasets. The existing methods for dose finding in dual-agent clinical trials are found to be suitable only for designs of modest dimensions. The model choice case-study is the first of its kind containing interesting results using so-called unit information prior distributions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Non-rigid image registration is an essential tool required for overcoming the inherent local anatomical variations that exist between images acquired from different individuals or atlases. Furthermore, certain applications require this type of registration to operate across images acquired from different imaging modalities. One popular local approach for estimating this registration is a block matching procedure utilising the mutual information criterion. However, previous block matching procedures generate a sparse deformation field containing displacement estimates at uniformly spaced locations. This neglects to make use of the evidence that block matching results are dependent on the amount of local information content. This paper presents a solution to this drawback by proposing the use of a Reversible Jump Markov Chain Monte Carlo statistical procedure to optimally select grid points of interest. Three different methods are then compared to propagate the estimated sparse deformation field to the entire image including a thin-plate spline warp, Gaussian convolution, and a hybrid fluid technique. Results show that non-rigid registration can be improved by using the proposed algorithm to optimally select grid points of interest.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Selection criteria and misspecification tests for the intra-cluster correlation structure (ICS) in longitudinal data analysis are considered. In particular, the asymptotical distribution of the correlation information criterion (CIC) is derived and a new method for selecting a working ICS is proposed by standardizing the selection criterion as the p-value. The CIC test is found to be powerful in detecting misspecification of the working ICS structures, while with respect to the working ICS selection, the standardized CIC test is also shown to have satisfactory performance. Some simulation studies and applications to two real longitudinal datasets are made to illustrate how these criteria and tests might be useful.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A modeling paradigm is proposed for covariate, variance and working correlation structure selection for longitudinal data analysis. Appropriate selection of covariates is pertinent to correct variance modeling and selecting the appropriate covariates and variance function is vital to correlation structure selection. This leads to a stepwise model selection procedure that deploys a combination of different model selection criteria. Although these criteria find a common theoretical root based on approximating the Kullback-Leibler distance, they are designed to address different aspects of model selection and have different merits and limitations. For example, the extended quasi-likelihood information criterion (EQIC) with a covariance penalty performs well for covariate selection even when the working variance function is misspecified, but EQIC contains little information on correlation structures. The proposed model selection strategies are outlined and a Monte Carlo assessment of their finite sample properties is reported. Two longitudinal studies are used for illustration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Selecting an appropriate working correlation structure is pertinent to clustered data analysis using generalized estimating equations (GEE) because an inappropriate choice will lead to inefficient parameter estimation. We investigate the well-known criterion of QIC for selecting a working correlation Structure. and have found that performance of the QIC is deteriorated by a term that is theoretically independent of the correlation structures but has to be estimated with an error. This leads LIS to propose a correlation information criterion (CIC) that substantially improves the QIC performance. Extensive simulation studies indicate that the CIC has remarkable improvement in selecting the correct correlation structures. We also illustrate our findings using a data set from the Madras Longitudinal Schizophrenia Study.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Efficiency of analysis using generalized estimation equations is enhanced when intracluster correlation structure is accurately modeled. We compare two existing criteria (a quasi-likelihood information criterion, and the Rotnitzky-Jewell criterion) to identify the true correlation structure via simulations with Gaussian or binomial response, covariates varying at cluster or observation level, and exchangeable or AR(l) intracluster correlation structure. Rotnitzky and Jewell's approach performs better when the true intracluster correlation structure is exchangeable, while the quasi-likelihood criteria performs better for an AR(l) structure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective Foodborne illnesses in Australia, including salmonellosis, are estimated to cost over $A1.25 billion annually. The weather has been identified as being influential on salmonellosis incidence, as cases increase during summer, however time series modelling of salmonellosis is challenging because outbreaks cause strong autocorrelation. This study assesses whether switching models is an improved method of estimating weather–salmonellosis associations. Design We analysed weather and salmonellosis in South-East Queensland between 2004 and 2013 using 2 common regression models and a switching model, each with 21-day lags for temperature and precipitation. Results The switching model best fit the data, as judged by its substantial improvement in deviance information criterion over the regression models, less autocorrelated residuals and control of seasonality. The switching model estimated a 5°C increase in mean temperature and 10 mm precipitation were associated with increases in salmonellosis cases of 45.4% (95% CrI 40.4%, 50.5%) and 24.1% (95% CrI 17.0%, 31.6%), respectively. Conclusions Switching models improve on traditional time series models in quantifying weather–salmonellosis associations. A better understanding of how temperature and precipitation influence salmonellosis may identify where interventions can be made to lower the health and economic costs of salmonellosis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Energiataseen mallinnus on osa KarjaKompassi-hankkeeseen liittyvää kehitystyötä. Tutkielman tavoitteena oli kehittää lypsylehmän energiatasetta etukäteen ennustavia ja tuotoskauden aikana saatavia tietoja hyödyntäviä matemaattisia malleja. Selittävinä muuttujina olivat dieetti-, rehu-, maitotuotos-, koelypsy-, elopaino- ja kuntoluokkatiedot. Tutkimuksen aineisto kerättiin 12 Suomessa tehdyistä 8 – 28 laktaatioviikon pituisesta ruokintakokeesta, jotka alkoivat heti poikimisen jälkeen. Mukana olleista 344 lypsylehmästä yksi neljäsosa oli friisiläis- ja loput ayshire-rotuisia. Vanhempien lehmien päätiedosto sisälsi 2647 havaintoa (koe * lehmä * laktaatioviikko) ja ensikoiden 1070. Aineisto käsiteltiin SAS-ohjelmiston Mixed-proseduuria käyttäen ja poikkeavat havainnot poistettiin Tukeyn menetelmällä. Korrelaatioanalyysillä tarkasteltiin energiataseen ja selittävien muuttujien välisiä yhteyksiä. Energiatase mallinnettiin regressioanalyysillä. Laktaatiopäivän vaikutusta energiataseeseen selitettiin viiden eri funktion avulla. Satunnaisena tekijänä mallissa oli lehmä kokeen sisällä. Mallin sopivuutta aineistoon tarkasteltiin jäännösvirheen, selitysasteen ja Bayesin informaatiokriteerin avulla. Parhaat mallit testattiin riippumattomassa aineistossa. Laktaatiopäivän vaikutusta energiataseeseen selitti hyvin Ali-Schaefferin funktio, jota käytettiin perusmallina. Kaikissa energiatasemalleissa vaihtelu kasvoi laktaatioviikosta 12. alkaen, kun havaintojen määrä väheni ja energiatase muuttui positiiviseksi. Ennen poikimista käytettävissä olevista muuttujista dieetin väkirehuosuus ja väkirehun syönti-indeksi paransivat selitysastetta ja pienensivät jäännösvirhettä. Ruokinnan onnistumista voidaan seurata maitotuotoksen, maidon rasvapitoisuuden ja rasva-valkuaissuhteen tai EKM:n sisältävillä malleilla. EKM:n vakiointi pienensi mallin jäännösvirhettä. Elopaino ja kuntoluokka olivat heikkoja selittäjiä. Malleja voidaan hyödyntää karjatason ruokinnan suunnittelussa ja seurannassa, mutta yksittäisen lehmän energiataseen ennustamiseen ne eivät sovellu.