790 resultados para adverse health effects
Resumo:
The main aim of the research project "On the Contribution of Schools to Children's Overall Indoor Air Exposure" is to study associations between adverse health effects, namely, allergy, asthma, and respiratory symptoms, and indoor air pollutants to which children are exposed to in primary schools and homes. Specifically, this investigation reports on the design of the study and methods used for data collection within the research project and discusses factors that need to be considered when designing such a study. Further, preliminary findings concerning descriptors of selected characteristics in schools and homes, the study population, and clinical examination are presented. The research project was designed in two phases. In the first phase, 20 public primary schools were selected and a detailed inspection and indoor air quality (IAQ) measurements including volatile organic compounds (VOC), aldehydes, particulate matter (PM2.5, PM10), carbon dioxide (CO2), carbon monoxide (CO), bacteria, fungi, temperature, and relative humidity were conducted. A questionnaire survey of 1600 children of ages 8-9 years was undertaken and a lung function test, exhaled nitric oxide (eNO), and tear film stability testing were performed. The questionnaire focused on children's health and on the environment in their school and homes. One thousand and ninety-nine questionnaires were returned. In the second phase, a subsample of 68 children was enrolled for further studies, including a walk-through inspection and checklist and an extensive set of IAQ measurements in their homes. The acquired data are relevant to assess children's environmental exposures and health status.
Resumo:
Objectives Dietary fibre (DF) is one of the components of diet that strongly contributes to health improvements, particularly on the gastrointestinal system. Hence, this work intended to evaluate the relations between some sociodemographic variables such as age, gender, level of education, living environment or country on the levels of knowledge about dietary fibre (KADF), its sources and its effects on human health, using a validated scale. Study design The present study was a cross-sectional study. Methods A methodological study was conducted with 6010 participants, residing in 10 countries from different continents (Europe, America, Africa). The instrument was a questionnaire of self-response, aimed at collecting information on knowledge about food fibres. The instrument was used to validate a scale (KADF) which model was used in the present work to identify the best predictors of knowledge. The statistical tools used were as follows: basic descriptive statistics, decision trees, inferential analysis (t-test for independent samples with Levene test and one-way ANOVA with multiple comparisons post hoc tests). Results The results showed that the best predictor for the three types of knowledge evaluated (about DF, about its sources and about its effects on human health) was always the country, meaning that the social, cultural and/or political conditions greatly determine the level of knowledge. On the other hand, the tests also showed that statistically significant differences were encountered regarding the three types of knowledge for all sociodemographic variables evaluated: age, gender, level of education, living environment and country. Conclusions The results showed that to improve the level of knowledge the actions planned should not be delineated in general as to reach all sectors of the populations, and that in addressing different people, different methodologies must be designed so as to provide an effective health education.
Resumo:
Abstract Health institutions have an increased risk of occurrence of errors due to their diversity, specificity and volume of services, representing a great concern for health professionals whose main function is to protect the health and lives of their patients. We intend to identify a body of evidence, that shows what the most common adverse events are and what adverse events potentially arise from clinical miscommunications. An integrative literature review using the keywords "Adverse Events", "Patient Safety", "Communication". An inquiry was made on databases PubMed, Web of Science, Scielo and CINAHL, in articles published between January 2010 and March 2016, available in Portuguese and English. Of the 216 articles that emerged were selected eight articles that answered the research questions: what are the most common adverse events that have their origin in communication errors? Analyzing the selected studies, it appears that the most common adverse events arise in the context of obstetrics and pediatrics, in surgical contexts, in the continuity of care and related medication. Patient safety should be seen as a key component of quality in health care, with good management of the risk of fundamental error for the promotion of this security. The knowledge and understanding that communication failures are one of the main factors contributing to the occurrence of errors in the context of health care, allows the subsequent development of strategies to improve this process and thus ensure safer healthcare.
Resumo:
Introduction: Nurses accompany patients throughout their health care to prevent and treat disease, so their knowledge about diet and dietary fibre is key to successful diet therapy, which is an essential part of a patient's non-pharmacological treatment. It is known from the literature that a high proportion of nurses have limited knowledge about diet therapy and about sources of soluble fibre and other foods that can prevent or treat certain diseases. Given the position of nurses as key providers of dietary guidance, and given the health benefits of dietary fibre, we wanted to assess the level of fibre-related knowledge among nurses in Croatia. Material and Methods: Cross-sectional study based on data collected between October 2014 and March 2015 using a survey developed by the CI&DETS Polytechnic Institute in Viseu, Portugal. The survey contains questions about demographic characteristics as well as about knowledge of sources of dietary fibre, recommended daily intake and effects of fibre intake on particular diseases. The study included a total of 369 nurses from two health institutions and one nursing school from Croatia older than 18 years. Differences in knowledge were assessed for significance using the non-parametric Mann-Whitney U test. Possible associations among variables were explored using Spearman's rank correlation. For all statistical analyses, the threshold of significance was defined as P<0.05. Results: The level of knowledge among nurses in Croatia about dietary fibre varied from «undecided» to «partial knowledge». The median for level of knowledge ranged from 3 to 4 with low variability ranging from 0.11 to 0.33. Average levels of knowledge in percentages varied from 57.6% to 82.1%. Nurses with higher education levels showed significantly higher knowledge levels about the influence of dietary fiber intake on the risk of certain diseases (p = 0.007), constipation (p = 0.016), bowel cancer (p = 0.005) and breast cancer (p = 0.039). Conclusion: The level of nurses’ knowledge about dietary fiber is suboptimal. This indicates the need to strengthen nurse education in the areas of diet and diet therapy. Increase the level of knowledge of nurses about nutrition can positively influence the quality of care.
Resumo:
Reactive oxygen species (ROS) and related free radicals are considered to be key factors underpinning the various adverse health effects associated with exposure to ambient particulate matter. Therefore, measurement of ROS is a crucial factor for assessing the potential toxicity of particles. In this work, a novel profluorescent nitroxide, BPEAnit, was investigated as a probe for detecting particle-derived ROS. BPEAnit has a very low fluorescence emission due to inherent quenching by the nitroxide group, but upon radical trapping or redox activity, a strong fluorescence is observed. BPEAnit was tested for detection of ROS present in mainstream and sidestream cigarette smoke. In the case of mainstream cigarette smoke, there was a linear increase in fluorescence intensity with an increasing number of cigarette puffs, equivalent to an average of 101 nmol ROS per cigarette based on the number of moles of the probe reacted. Sidestream cigarette smoke sampled from an environmental chamber exposed BPEAnit to much lower concentrations of particles, but still resulted in a clearly detectible increase in fluorescence intensity with sampling time. It was calculated that the amount of ROS was equivalent to 50 ± 2 nmol per mg of particulate matter; however, this value decreased with ageing of the particles in the chamber. Overall, BPEAnit was shown to provide a sensitive response related to the oxidative capacity of the particulate matter. These findings present a good basis for employing the new BPEAnit probe for the investigation of particle-related ROS generated from cigarette smoke as well as from other combustion sources.
Resumo:
Background, Aim and Scope The impact of air pollution on school children’s health is currently one of the key foci of international and national agencies. Of particular concern are ultrafine particles which are emitted in large quantities, contain large concentrations of toxins and are deposited deeply in the respiratory tract. Materials and methods In this study, an intensive sampling campaign of indoor and outdoor airborne particulate matter was carried out in a primary school in February 2006 to investigate indoor and outdoor particle number (PN) and mass concentrations (PM2.5), and particle size distribution, and to evaluate the influence of outdoor air pollution on the indoor air. Results For outdoor PN and PM2.5, early morning and late afternoon peaks were observed on weekdays, which are consistent with traffic rush hours, indicating the predominant effect of vehicular emissions. However, the temporal variations of outdoor PM2.5 and PN concentrations occasionally showed extremely high peaks, mainly due to human activities such as cigarette smoking and the operation of mower near the sampling site. The indoor PM2.5 level was mainly affected by the outdoor PM2.5 (r = 0.68, p<0.01), whereas the indoor PN concentration had some association with outdoor PN values (r = 0.66, p<0.01) even though the indoor PN concentration was occasionally influenced by indoor sources, such as cooking, cleaning and floor polishing activities. Correlation analysis indicated that the outdoor PM2.5 was inversely correlated with the indoor to outdoor PM2.5 ratio (I/O ratio) (r = -0.49, p<0.01), while the indoor PN had a weak correlation with the I/O ratio for PN (r = 0.34, p<0.01). Discussion and Conclusions The results showed that occupancy did not cause any major changes to the modal structure of particle number and size distribution, even though the I/O ratio was different for different size classes. The I/O curves had a maximum value for particles with diameters of 100 – 400 nm under both occupied and unoccupied scenarios, whereas no significant difference in I/O ratio for PM2.5 was observed between occupied and unoccupied conditions. Inspection of the size-resolved I/O ratios in the preschool centre and the classroom suggested that the I/O ratio in the preschool centre was the highest for accumulation mode particles at 600 nm after school hours, whereas the average I/O ratios of both nucleation mode and accumulation mode particles in the classroom were much lower than those of Aitken mode particles. Recommendations and Perspectives The findings obtained in this study are useful for epidemiological studies to estimate the total personal exposure of children, and to develop appropriate control strategies for minimizing the adverse health effects on school children.
Resumo:
Particulate pollution has been widely recognised as an important risk factor to human health. In addition to increases in respiratory and cardiovascular morbidity associated with exposure to particulate matter (PM), WHO estimates that urban PM causes 0.8 million premature deaths globally and that 1.5 million people die prematurely from exposure to indoor smoke generated from the combustion of solid fuels. Despite the availability of a huge body of research, the underlying toxicological mechanisms by which particles induce adverse health effects are not yet entirely understood. Oxidative stress caused by generation of free radicals and related reactive oxygen species (ROS) at the sites of deposition has been proposed as a mechanism for many of the adverse health outcomes associated with exposure to PM. In addition to particle-induced generation of ROS in lung tissue cells, several recent studies have shown that particles may also contain ROS. As such, they present a direct cause of oxidative stress and related adverse health effects. Cellular responses to oxidative stress have been widely investigated using various cell exposure assays. However, for a rapid screening of the oxidative potential of PM, less time-consuming and less expensive, cell-free assays are needed. The main aim of this research project was to investigate the application of a novel profluorescent nitroxide probe, synthesised at QUT, as a rapid screening assay in assessing the oxidative potential of PM. Considering that this was the first time that a profluorescent nitroxide probe was applied in investigating the oxidative stress potential of PM, the proof of concept regarding the detection of PM–derived ROS by using such probes needed to be demonstrated and a sampling methodology needed to be developed. Sampling through an impinger containing profluorescent nitroxide solution was chosen as a means of particle collection as it allowed particles to react with the profluorescent nitroxide probe during sampling, avoiding in that way any possible chemical changes resulting from delays between the sampling and the analysis of the PM. Among several profluorescent nitroxide probes available at QUT, bis(phenylethynyl)anthracene-nitroxide (BPEAnit) was found to be the most suitable probe, mainly due to relatively long excitation and emission wavelengths (λex= 430 nm; λem= 485 and 513 nm). These wavelengths are long enough to avoid overlap with the background fluorescence coming from light absorbing compounds which may be present in PM (e.g. polycyclic aromatic hydrocarbons and their derivatives). Given that combustion, in general, is one of the major sources of ambient PM, this project aimed at getting an insight into the oxidative stress potential of combustion-generated PM, namely cigarette smoke, diesel exhaust and wood smoke PM. During the course of this research project, it was demonstrated that the BPEAnit probe based assay is sufficiently sensitive and robust enough to be applied as a rapid screening test for PM-derived ROS detection. Considering that for all three aerosol sources (i.e. cigarette smoke, diesel exhaust and wood smoke) the same assay was applied, the results presented in this thesis allow direct comparison of the oxidative potential measured for all three sources of PM. In summary, it was found that there was a substantial difference between the amounts of ROS per unit of PM mass (ROS concentration) for particles emitted by different combustion sources. For example, particles from cigarette smoke were found to have up to 80 times less ROS per unit of mass than particles produced during logwood combustion. For both diesel and wood combustion it has been demonstrated that the type of fuel significantly affects the oxidative potential of the particles emitted. Similarly, the operating conditions of the combustion source were also found to affect the oxidative potential of particulate emissions. Moreover, this project has demonstrated a strong link between semivolatile (i.e. organic) species and ROS and therefore, clearly highlights the importance of semivolatile species in particle-induced toxicity.
Resumo:
Airborne particulate matter pollution is of concern for a number of reasons and has been widely recognised as an important risk factor to human health. A number of toxicological and epidemiological studies reported negative health effects on both respiratory and cardiovascular system. Despite the availability of a huge body of research, the underlying toxicological mechanisms by which particles induce adverse health effects are not yet entirely understood. The production of reactive oxygen species (ROS) has been shown to induce oxidative stress, which is proposed as a mechanism for many of the adverse health outcomes associated with exposure to particulate matter (PM). Therefore, it is crucial to introduce a technique that will allow rapid and routine screenings of the oxidative potential of PM.
Resumo:
Eepidemiological studies have linked exposure to ultrafine particles (UFPs, <100 nm) to a variety of adverse health effects. To understand the mechanisms behind these effects, it is essential to measure aerosol deposition in the human respiratory tract. Electrical charge is a very important property as it may increase the particle deposition in human respiratory tract (Melanderi et al., 1983). However, the effect of charge on UFP deposition has seldom been investigated. The aim of this study is to investigate the effect of charge on UFP deposition in human lung, by conducting a pilot study using a tube-based experimental system.
Resumo:
Traffic emissions are considered as a major source of pollutants, particularly ultrafine particles, in the urban environment. There is an increased concern about airborne particles not only because of their environmental effects but also due to their potential adverse health effects on humans. There have been a number of studies related to the number concentration and size distribution of these particles but studies on the chemical composition of aerosols, especially in the school environment, are very limited. Mejia et. al (2011) reviewed studies on the exposure to and impact of air pollutants on school children and found that there were only a handful of studies on this topic. Therefore, the main focus of this research is on an analysis of the chemical composition of airborne particles, as well as source apportionment and the quantification of ambient concentrations of organic pollutants in the vicinity of schools, as a part of “Ultrafine Particles from Traffic Emissions on Children’s Health” (UPTECH) project. The aim of the present study was to find out the concentrations of different Volatile Organic Compounds (VOCs) in both outdoor and indoor locations from six different schools in Brisbane.
Resumo:
Epidemiological studies have demonstrated that exposure to particulate air pollution is associated with several adverse health effects. Recently, interest has focused on ultrafine particles (UFPs, diameter ≤ 100 nm), due to the adverse health effects caused by their ability to induce inflammation and deposit in secondary organs [1]. These effects are much more pronounced in children because they inhale a higher dose of UFPs relative to both lung size (when compared with adults) [2] and increased breathing rates, since they are generally more physically active than adults ...
Resumo:
Airborne particles have been shown to be associated with a wide range of adverse health effects, which has led to a recent increase in medical research to gain better insight into their health effects. However, accurate evaluation of the exposure-dose-response relationship is highly dependent on the ability to track actual exposure levels of people to airborne particles. This is quite a complex task, particularly in relation to submicrometer and ultrafine particles, which can vary quite significantly in terms of particle surface area and number concentrations. Therefore, suitable monitors that can be worn for measuring personal exposure to these particles are needed. This paper presents an evaluation of the metrological performance of six diffusion charger sensors, NanoTracer (Philips Aerasense) monitors, when measuring particle number and surface area concentrations, as well as particle number distribution mean when compared to reference instruments. Tests in the laboratory (by generating monodisperse and polydisperse aerosols) and in the field (using natural ambient particles) were designed to evaluate the response of these devices under both steady-state and dynamics conditions. Results showed that the NanoTracers performed well when measuring steady state aerosols, however they strongly underestimated actual concentrations during dynamic response testing. The field experiments also showed that, when the majority of the particles were smaller than 20 nm, which occurs during particle formation events in the atmosphere, the NanoTracer underestimated number concentration quite significantly. Even though the NanoTracer can be used for personal monitoring of exposure to ultrafine particles, it also has limitations which need to be considered in order to provide meaningful results.
Resumo:
Exhaust emissions from motor vehicles vary widely and depend on factors such as engine operating conditions, fuel, age, mileage and service history. A method has been devised to rapidly identify high-polluting vehicles as they travel on the road. The method is able to monitor emissions from a large number of vehicles in a short time and avoids the need to conduct expensive and time consuming tests on chassis dynamometers. A sample of the exhaust plume is captured as each vehicle passes a roadside monitoring station and the pollutant emission factors are calculated from the measured concentrations using carbon dioxide as a tracer. Although, similar methods have been used to monitor soot and gaseous mass emissions, to-date it has not been used to monitor particle number emissions from a large fleet of vehicles. This is particularly important as epidemiological studies have shown that particle number concentration is an important parameter in determining adverse health effects. The method was applied to measurements of particle number emissions from individual buses in the Brisbane City Council diesel fleet operating on the South-East Busway. Results indicate that the particle number emission factors are gamma- distributed, with a high proportion of the emissions being emitted by a small percentage of the buses. Although most of the high-emitters are the oldest buses in the fleet, there are clear exceptions, with some newer buses emitting as much. We attribute this to their recent service history, particularly pertaining to improper tuning of the engines. We recommend that a targeted correction program would be a highly effective measure in mitigating urban environmental pollution.
Resumo:
Introduction: Exposure to bioaerosols in indoor environments has been linked to various adverse health effects, such as airway disorders and upper respiratory tract symptoms. The aim of this study was to assess exposure to bioaerosols in the school environment in Brisbane, Australia. Methods: Culturable fungi and endotoxin measurements were conducted in six schools between October 2010 and May 2011. Culturable fungi (2 indoor air and 1-2 outdoor air samples per school) were assessed using a Biotest RCS High Flow Air Sampler, with a flow rate of either 50L/min or 20L/min. A rose pengar agar was used for recovery, which was incubated prior to counting and partial identification. Endotoxins were sampled (8h, 2L/min) using SKC glass fibre filters (4 indoor air samples per school) and analysed using an endpoint chromogenic LAL assay. Results: The arithmetic mean for fungi concentration in indoor and outdoor air was 710 cfu/m3(125- 1900 cfu/m3) and 524 cfu/m3 (140-1250 cfu/m3), respectively. The most frequently isolated fungal genus from the outdoor air was Cladosporium (over 40 %), followed by isolated Penicillium (21%) and Aspergillus (12%). The percent of Penicillium, Cladosporium and Aspergillus in indoor air samples was 32%, 32% and 8%, respectively. The aritmetic mean of endotoxin concentration was 0.59 EU/m3 (0-2,2 EU/m3). Discussion: The results of the current study are in agreement with previously reported studies, in that airborne fungi and endotoxin concentrations varied extensively, and were mostly dependent on climatic conditions. In addition, the indoor air mycoflora largely reflected the fungal flora present in the outdoor air, with Cladosporium being the most common in both outdoor and indoor (with Penicillium) air. In indoor air, unusually high endotoxin levels, over 1 EU/m3, were detected at 2 schools. Although these schools were not affected by the recent Brisbane floods, persistent rain prior to and during the study perios could explain the results.
Resumo:
There is an increased concern about airborne particles not only because of their environmental effects, but also due to their potential adverse health effects on humans, especially children. Despite the growing evidence of airborne particles having an impact on children’s health, there have been limited studies investigating the long term health effects as well as the chemical composition of ambient air which further helps in determining their toxicity. Therefore, a systematic study on the chemical composition of air in school environment has been carried out in Brisbane, which is known as “Ultrafine Particles from Traffic Emissions on Children’s Health” (UPTECH). This study is also a part of the larger project focusing on analysis of the chemical composition of ambient air, as well as source apportionment and the quantification of ambient concentrations of organic pollutants in the vicinity of schools. However, this particular paper presents some of the results on concentration of different Volatile Organic Compounds in both indoor and outdoor location from different schools. The database consisted of 750 samples (500 outdoor and 250 indoor) collected for VOCs at 25 different schools. The sampling and analysis were conducted following the standard methods. A total of 90 individual VOCs were identified from the schools studied. Compounds such as toluene, acetic acid, nonanal, benzaldehyde, 2- ethyl 1- hexanol, limonene were the most common in indoors whereas isopentane, toluene, hexane, heptane were dominant in outdoors. The indoor/ outdoor ratio of average sum of VOCs were found to be more than one in most of the schools indicating that there might be additional indoor sources along with the outdoor air in those schools. However, further expansion of the study in relation to source apportionment, correlating with traffic and meteorological data is in progress.