999 resultados para ZnO crystals
Resumo:
The objective of this work is to study the growth of a cylindrical void ahead of a notch tip in ductile FCC single crystals under mode I, plane strain, small scale yielding (SSY) conditions. To this end, finite element simulations are performed within crystal plasticity framework neglecting elastic anisotropy. Attention is focussed on the effects of crystal hardening, ratio of void diameter to spacing from the notch and crystal orientation on plastic flow localization in the ligament connecting the notch and the void as well as their growth. The results show strong interaction between shear bands emanating from the notch and angular sectors of single slip forming around the void leading to intense plastic strain development in the ligament. Further, the ductile fracture processes are retarded by increase in hardening of the single crystal and decrease in ratio of void diameter to spacing from the notch. Also, a strong influence of crystal orientation on near-tip void growth and plastic slip band development is observed. Finally, the synergistic, cooperative growth of multiple voids ahead of the notch tip is examined.
Resumo:
No abstract.
Resumo:
The electron and hole mobilities of octathio[8]circulene (sulflower) crystal have been calculated using quantum chemical methods, with accurate determination of reorganization energies and the rate of charge transfer, the key parameters controlling the charge carriers conductance. We find this molecular crystal to be an excellent conductor with large mobilities for both the charge carriers. Moreover, the hole mobility is found to be slightly larger than the electron mobility. Such an ambipolar organic crystal with substantial carrier mobilities shows possibilities of sophisticated device fabrication in advanced electronics.
Resumo:
Abstract is not available.
Resumo:
We report linear and nonlinear optical properties of the biologically important Na doped ZnO nanoparticle dispersions. Interesting morphological changes involving a spherical to flowerlike transition have been observed with Na doping. Optical absorption measurements show an exciton absorption around 368 nm. Photoluminescence measurements reveal exciton recombination emission, along with shallow and deep trap emissions. The increased intensity of shallow trap emission with Na doping is attributed to oxygen deficiency and shape changes associated with doping. Nonlinear optical measurements show a predominantly two-photon induced, excited state absorption, when excited with 532 nm, 5 ns laser pulses, indicating potential optical limiting applications.
Resumo:
An apolar synthetic analog of the first 10 residues at the NH2-terminal end of zervamicin IIA crystallizes in the triclinic space group P1 with cell dimensions a = 10.206 +/- 0.002 A, b = 12.244 +/- 0.002 A, c = 15.049 +/- 0.002 A, alpha = 93.94 +/- 0.01 degrees, beta = 95.10 +/- 0.01 degrees, gamma = 104.56 +/- 0.01 degrees, Z = 1, C60H97N11O13 X 2H2O. Despite the relatively few alpha-aminoisobutyric acid residues, the peptide maintains a helical form. The first intrahelical hydrogen bond is of the 3(10) type between N(3) and O(0), followed by five alpha-helix-type hydrogen bonds. Solution 1H NMR studies in chloroform also favor a helical conformation, with seven solvent-shielded NH groups. Continuous columns are formed by head-to-tail hydrogen bonds between the helical molecules along the helix axis. The absence of polar side chains precludes any lateral hydrogen bonds. Since the peptide crystallizes with one molecule in a triclinic space group, aggregation of the helical columns must necessarily be parallel rather than antiparallel. The packing of the columns is rather inefficient, as indicated by very few good van der Waals' contacts and the occurrence of voids between the molecules.
Resumo:
The crystal structure of the pentapeptide p-toluene-sulfonyl-(α-aminoisobutyryl)5-methyl ester (Tosyl-(Aib)5-OMe) has been determined in the space group PImage . Pentapeptide molecules are folded in the 310 helical conformation and packed together, so as to yield a hydrophobic channel with a minimim diameter of 5.2 �. The channel contains crystallographically disordered material. This structure provides a model for channel formation by hydrophobic peptide aggregates and should prove useful in studies of alamethicin, suzukacillin and related Aib containing membrane channels. Triclinic (PImage ) crystals of the pentapeptide are obtained in the presence of LiClO4 in aqueous methanol, whereas crystallization from methanol alone yields crystals in the space group Pbca. The conformations of the peptide in the two crystal forms are very similar and only the molecular packing is dramatically different.
Resumo:
A study of the phase transitions in (NH4)2SO4 and (NH4)2SO4---K2SO4 mixed crystals by EPR of the CrO3- ion is reported. The results indicate a bilinear coupling of the order parameter with spontaneous polarization and a crossover from a discontinuous to a continuous nature of the phase transition in mixed crystals.
Resumo:
In this paper, we report the synthesis and self assembly of various sizes of ZnO nanocrystals. While the crystal structure and the quantum confinement of nanocrystals were mainly characterized using XRD and UV absorption spectra, the self assembly and long range ordering were studied using scanning tunneling microscopy after spin casting the nanocrystal film on the highly oriented pyrolytic graphite surface. We observe self assembly of these nanocrystals over large areas making them ideal candidates for various potential applications. Further, the electronic structure of the individual dots is obtained from the current-voltage characteristics of the dots using scanning tunneling spectroscopy and compared with the density of states obtained from the tight binding calculations. We observe an excellent agreement with the experimentally obtained local density of states and the theoretically calculated density of states.
Resumo:
The hexahydrate of a 1:1 complex between L-histidyl-L-serine and glycyl-L-glutamic acid crystallizes in space group P1 with a = 4.706(1), b= 8.578(2), c= 16.521(3) ÅA; α= 85.9(1), β= 89.7(1)°, = 77.4(1). The crystal structure, solved by direct methods, has been refined to an R value of 0.046 for 2150 observed reflections. The two peptide molecules in the structure have somewhat extended conformations. The unlike molecules aggregate into separate alternating layers. Each layer is stabilized by hydrogen bonded head-to-tail sequences as well as sequences of hydrogen bonds involving peptide groups. The arrangement of molecules in each layer is similar to one of the plausible idealized arrangements of L-alanyl-L-alanine worked out from simple geometrical considerations. Adjacent layers in the structure are held together by interactions involving side chains as well as water molecules. The water structure observed in the complex provides a good model, at atomic resolution, for that in protein crystals. An interesting feature of the crystal structure is the existence of two water channels in the interfaces between adjacent peptide layers.
Resumo:
The use of more than one liquid crystal solvents to determine molecular structure and conformation is discussed. Liquid crystals of similar and opposite signs of diamagnetic anisotropies are considered separately since they lead to different novel applications. Advantages of such experiments over those employing single solvents are pointed out with illustrative examples.
Resumo:
Abstract is not available.
Resumo:
Single crystals of tin oxide have been grown under conditions obtained in oil fired porcelain tunnel kilns. It was noted that the reducing conditions in the kilns help in the growth of SnO2 crystals at much lower temperatures (1300°C). The growth seems to more pronounced in presence of silicon carbide. The crystals grow as long fibres of 0.1 to 0.5 mm dia. and 10 to 50 mm length. The crystals exhibit rutile structure and the direction of growth seems to be favoured in any one of the major axes a and c.
Resumo:
Raman spectra of the ferroelectric LiH3 (SeO3)2 and NaH3(SeO3)2 and the anti-ferroelectric KH3 (SeO3)2 have been recorded at room temperature using a He-Ne and also an Ar-ion laser source. The infrared absorption spectra of these crystals and their deuterated analogues have been recorded in the region 400–4000 cm−1 both below and above the Curie temperature. From an analysis of the spectrum in the region 400–900 cm−1 it is concluded that (i) in LiH3 (SeO3)2 the protons are ordered in an asymmetric double minimum potential with a low barrier and the spectrum can be interpreted in terms of HSeO3− and H2SeO3 vibrations, (ii) in NaH3 (SeO3)2 all three protons occupy a single minimum potential at room temperature and below the transition temperature the groups HSeO3− and H2SeO3 are present, (iii) the proton at the inversion centre in KH3(SeO3)2 is in a broad troughed potential well and the low temperature spectrum is more likely to be due to H3SeO3+ and SeO32− species. This deviation of the spectrum from that of the previous two crystals is attributed to the difference in H-bond scheme and hence the absence of any cooperative motion of protons in this crystal.