995 resultados para Zircon geochronology
Resumo:
The electronic properties of zircon and hafnon, two wide-gap high-kappa materials, are investigated using many-body perturbation theory (MBPT) combined with the Wannier interpolation technique. For both materials, the calculated band structures differ from those obtained within density-functional theory and MBPT by (i) a slight displacement of the highest valence-band maximum from the Gamma point and (ii) an opening of the indirect band gap to 7.6 and 8.0 eV for zircon and hafnon, respectively. The introduction of vertex corrections in the many-body self-energy does not modify the results except for a global rigid shift of the many-body corrections.
Resumo:
This study has three purposes: to establish a chronologically controlled vegetational history for a number of sites in south Southwestern Ontario; to utilize the resulting data to support and/or add to the current understanding of Quaternary geology and stratigraphy, and the glacial and postglacial history of the Great Lakes in south Southwestern Ontario; and to attempt to propose a possible explanation for the extinction of the mastodon in Southern Ontario. Palynological and geochronological analyses were conducted on material collected from eleven sites (east to west): Verbeke Mastodon Site, Woloshko Mastodon Site, Walker Pond II, Pond Mills I, Lake Hunger Bog, Bouckaert Site. Mabee Site, Cornell Bog. Colles Lake I, Folden Mastodon Site and Forest Pond. Individual geochronologically controlled (where possible) vegetational histories were reconstructed for each of the sites investigated. The results of the individual studies, when considered in overview. indicated the existance of an established closed boreal forest throughout south Southwestern Ontario by 10,000 years B.P. This evidence for a significant climatic change coincident throughout south Southwestern Ontario supports the proposed age of 10,000 years B.P. for the Pleistocene/Holocene Boundary (Terasmae, 1972). Remnant patches of 'open spruce parkland' persisted in small local 'wet' areas. It was in these areas that the mastodon was restricted during early Holocene time. With continued encroachment by the surrounding boreal forest, possibly speeded up by this browser's destructive feeding habits, the spruce enclaves shrank and the mastodon became extinct in south Southwestern Ontario. The results of this thesis basically support Dreimanis' (1967, 1968) proposed 'Environmental-Climatic' theory for mastodon extinction. It is suggested that increased dryness during the present interglacial compared to the climate of earlier interglacials may be the key to unravelling the problem of mastodon extinction in eastern North America.
Resumo:
Tesis (Maestro en Ciencias con especialidad en materiales) - U.A.N.L, 2004
Resumo:
Department of Marine Geology & Geophysics, Cochin University of Science & Technology
Resumo:
New structural, geochronological and paleomagnetic data were obtained on dolerite dikes of the Nola region (Central African Republic) at the northern border of the Congo craton. In this region metavolcanic, successions were thrust southward onto the craton during the Panafrican orogenic events. Our structural data reveal at least two structural klippes south of the present-day limits of the Panafrican nappe suggesting that it has once covered the whole Nola region, promoting the pervasive hydrothermal green-schist metamorphism observed in the underlying cratonic basement and also in the intrusive dolerite dikes. Paleomagnetic measurements revealed a stable dual-polarity low-inclination magnetization component in nine dikes (47 samples), carried by pyrrhotite and magnetite. This component corresponds to a paleopole at 304.8 degrees E and 61.8 degrees S (dp = 5.4, dm = 10.7) graded at 2 = 6. Both metamorphism and magnetic resetting were dated by the Ar-40/Ar-39 method on amphibole grains separated from the dikes at 571 +/- 6 Ma. The Nola pole is the first well-dated paleomagnetic pole for the Congo craton between 580 and 550 Ma. It marks a sudden change in direction of the Congo craton apparent polar wander path at the waning stages of the Panafrican orogenic events. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
In an attempt to improve our understanding of the Paleoproterozoic geodynamic evolution, a paleomagnetic study was performed on 10 sites of acid volcanic rocks of the Colider Suite, southwestern Amazonian Craton. These rocks have a well-dated zircon U-Pb mean age of 1789 +/- 7 Ma. Alternating field and thermal demagnetization revealed northern (southern) directions with moderate to high upward (downward) inclinations. Rock magnetism experiments and magnetic mineralogy show that this characteristic magnetization is carried by Ti-poor magnetite or by hematite that replaces magnetite by late-magmatic cleuteric alteration. Both magnetite and hematite carry the same characteristic component. The mean direction (Dm = 183.0 degrees, Im = 53.5 degrees, N = 10, alpha(95) = 9.8 degrees, K = 25.2) yielded a paleomagnetic pole located at 298.8 degrees E, 63.3 degrees S (alpha(95) = 10.2 degrees, K = 23.6), which is classified with a quality factor Q = 5. Paleogeographic reconstructions using this pole and other reliable Paleoproterozoic poles suggest that Laurentia, Baltica, North China Craton and Amazonian Craton were located in laterally contiguous positions forming a large continental mass at 1790 Ma ago. This is reinforced by geological evidence which support the existence of the supercontinent Columbia in Paleoproterozoic times. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The sphene-centered ocellar texture consists of leucocratic ocelli with sphene (titanite) crystals at the center, enclosed in a biotite-rich matrix. This texture has been recognized worldwide in hybrid intermediate rocks. On the basis of structural, petrological, and geochronological data from selected outcrops of the Variscan Ribadelago pluton (NW Iberian Massif), we propose that the ocelli were formed by migration and accumulation of a residual melt through a plagioclase- and biotite-dominated crystalline framework. At the late stage of crystallization, the magma acted as a hyperdense suspension and reacted to the pressure gradient caused by the regional stress field, entering the domain of grain-supported flow. Microstructures reveal that aligned crystal domains arose in the crystal framework from the shearing and compaction of the crystal mush and behaved as magmatic microshears. Relative displacement of adjacent crystal clusters along these microshears corresponded to the onset of Reynolds dilatancy that generated an expansion of the crystal mush, involving melt migration and pore aperture. The mineralogy of the ocelli, dominated by andesine and sphene, represents the composition of the migrating melt. The chemistry of this late, Ti-rich melt stems from the incongruent melting of biotite. Magmatic sphene from the ocelli yields a U-Pb age of 317 +/- 1 Ma, which represents the final crystallization of the hybridized magmatic system. Moreover, this texture offers an opportunity to better understand the rheological behavior of highly crystallized magmas.
Resumo:
New U-Pb (SHRIMP) and (40)Ar/(39)Ar isotopic data of igneous rocks and mylonites of the Borborema Province (NE Brazil) show that a wide range of tectonothermal events affected the province during the transition from the Precambrian to the Cambrian. Concordant zircon U-Pb data constrained the crystallization age of mafic stocks, mafic to felsic dikes and granite batholiths between 548 and 533 Ma. These bodies were emplaced in a regional strain field combining extension and dextral shearing. The ductile shear deformation overprinted an older basement fabric to develop a low- to medium metamorphic grade vertical mylonite belt that cut the province in the E-W direction. Magnetic fabrics of the Cambrian batholiths determined by anisotropy of magnetic susceptibility are consistent with syntectonic emplacement. The magmatic pulses and shear deformation would have supplied enough heat to reset the synkinematic micas of mylonites to yield (40)Ar/(39)Ar plateau cooling ages between ca. 550 and 510 Ma. These results provide evidence that emplacement of Early Cambrian mafic and felsic magmas were accompanied by regional-scale shear deformations, probably in the consequence of late collisions along the West Gondwana margin. (C) 2010 Published by Elsevier B.V.
Resumo:
The Santa Rosa and Sauce Guacho plutons are two post-collisional peraluminous Late Devonian to Early Carboniferous leucogranites that intruded the banded schists of the Ancasti Formation. The leucogranites are composed of microcline phenocrysts along with quartz, plagioclase, muscovite, biotite, ilmenite, tourmaline, apatite, monazite and zircon. Their geochemical composition is consistent with S-type granites and mineralogically they belong to MPG granites (muscovite-peraluminous granites). It is proposed that granite magma generation was related to shear zones that concentrated fluids in the metasedimentary crust during a collision or transcurrent tectonics. U-Pb analyses on monazite gave an age of 369.8 +/- 5.3 Ma, while Sm/Nd isotopic data yield epsilon(Nd(t)) values of -5.3 for Sauce Guacho and -5.7 for Santa Rosa indicating crustal provenance. Nd model ages between 1,544 and 1,571 Ma are within the range of magmatic rocks from the Lower Ordovician Famatinian Arc in the Central Sierras Pampeanas.
Resumo:
The basement in the `Altiplano` high plateau of the Andes of northern Chile mostly consists of late Paleozoic to Early Triassic felsic igneous rocks (Collahuasi Group) that were emplaced and extruded along the western margin of the Gondwana supercontinent. This igneous Suite crops out in the Collalluasi area and forms the backbone of most of the high Andes from latitude 20 degrees to 22 degrees S. Rocks of the Collahuasi Group and correlative formations form art extensive belt of volcanic and subvolcanic rocks throughout the main Andes of Chile, the Frontal Cordillera of Argentina (Choiyoi Group or Choiyoi Granite-Rhyolite Province), and the Eastern Cordillera of Peru. Thirteen new SHRIMP U-Pb zircon ages from the Collahuasi area document a bimodal timing for magnatism, with a dominant peak at about 300 Ma and a less significant one at 244 Ma. Copper-Mo porphyry mineralization is related to the younger igneous event. Initial Hf isotopic ratios for the similar to 300 Ma zircons range from about -2 to +6 indicating that the magmas incorporated components with a significant crustal residence time. The 244 Ma magmas were derived from a less enriched source, with the initial HT values ranging from +2 to +6, suggestive of a mixture with a more depleted component. Limited whole rock (144)Nd/(143)Nd and (87)Sr/(86)Sr isotopic ratios further support the likelihood that the Collahuasi Group magmatism incorporated significant older crustal components, or at least a mixture of crustal sources with more and less evolved isotopic signatures. (C) 2007 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
Resumo:
The Amazonian Craton comprises an Archean domain surrounded by four successively younger Proterozoic tectonic provinces. Within the Rio-Negro-Juruena province the Serra da Providencia Intrusive Suite (1.60 and 1.53 Ga) consists of A-type rapakivi granites, charnockites and mangerites genetically associated with diabase dikes, gabbros and amphibolites lites. The original mafic melts were derived from a depleted mantle source (epsilon(Nd(T)) + 2.5 to +2.8; epsilon(Sr(T)) - 12.1). Underplated mafic magma induced melting of a short-lived fielsic crust, thus originating coeval felsic-inafic magmatism in a continental intraplate setting. The Colorado Complex, assigned to the Rondonian-San Ignacio province, comprises 1.35-1.36 Ga intrusive bimodal magmatism represented by monzonite gneisses associated with amphibolite, gabbro and metadiabase dikes intercalated with metasediments with detrital zircon that yield U-Pb ages of 1.35 to 1.42 Ga. Mafic samples display juvenile signatures (epsilon(Nd(T)) 0.0 to +5.2; epsilon(Sr(T)) -5.0 to -30.7) and are less contaminated than the Serra da Previdencia and Nova Brasiladndia ones. The generation of the basaltic magma is related to the subduction of an oceanic slab below the peridotite wedge (intraoceanic arc setting). Fluids and/or small melts from the slab impregnated the mantle. The Nova Brasilandia Sequence (Sunsas-Aguapei province) comprises a metasedimentary sequence intruded by 1.10-1.02 Ga metadiabases, gabbros, meta-gabbros, and amphibolites associated with granitic plutons (bimodal magmatism). The original tholeiitic magmas, derived from a depleted source (epsilon(Nd(T)) = +3.1 to +5.0), in a proto-oceanic setting, underwent subsequent contamination by the host rocks, as indicated by the isotopic and trace element data.