987 resultados para Yield Potential
Resumo:
The area cultivated using conservation tillage has recently increased in central Spain. However, soil compaction and water retention with conservation tillage still remains a genuine concern for landowners in this region be- cause of its potential effect on the crop growth and yield. The aim of this research is to determine the short- term influences of four tillage treatments on soil physical properties. In the experiment, bulk density, cone index, soil water potential, soil temperature and maize (Zea mays L.) productivity have been measured. A field experiment was established in spring of 2013 on a loamy soil. The experiment compared four tillage methods (zero tillage, ZT; reservoir tillage, RT; minimum tillage, MT; and conventional tillage, CT). Soil bulk density and soil cone index were measured during maize growing season and at harvesting time. Furthermore, the soil water potential was monitored by using a wireless sensors network with sensors at 20 and 40 cm depths. Also, soil temperatures were registered at depths of 5 and 12 cm. Results indicated that there were significant differ- ences between soil bulk density and cone index of ZT method and those of RT, MT, and CT, during the growing season; although, this difference was not significant at the time of harvesting in some soil layers. Overall, in most soil layers, tillage practice affected bulk density and cone index in the order: ZT N RT N MT N CT. Regardless oftheentireobservationperiod,results exhibited that soils under ZT and RT treatments usually resulted in higher water potential and lower soil temperature than the other two treatments at both soil depths. In addition, clear differences in maize grain yield were observed between ZT and CT treatments, with a grain yield (up to 15.4%) increase with the CT treatment. On the other hand, no significant differences among (RT, MT, and CT) on maizeyieldwerefound.Inconclusion,the impact of soil compaction increase and soil temperature decrease,pro- duced by ZT treatment is a potential reason for maize yield reduction in this tillage method. We found that RT could be certainly a viable option for farmers incentral Spain,particularly when switching to conservation tillage from conventional tillage. This technique showed a moderate and positive effect on soil physical properties and increased maize yields compared to ZT and MT, and provides an opportunity to stabilize maize yields compared to CT.
Resumo:
Reducing the gap between water-limited potential yield and actual yield in oil palm production systems through intensification is seen as an important option for sustainably increasing palm oil production. Simulation models can play an important role in quantifying water-limited potential yield, and therefore the scope for intensification, but no oil palm model exists that is both simple enough and at the same time incorporates sufficient plant physiological knowledge to be generally applicable across sites with different growing conditions. The objectives of this study therefore were to develop a model (PALMSIM) that simulates, on a monthly time step, the potential growth of oil palm as determined by solar radiation and to evaluate model performance against measured oil palm yields under optimal water and nutrient management for a range of sites across Indonesia and Malaysia. The maximum observed yield in the field matches the corresponding simulated yield for dry bunch weight with a RMSE of 1.7 Mg ha?1 year?1 against an observed yield of 18.8 Mg ha?1. Sensitivity analysis showed that PALMSIM is robust: simulated changes in yield caused by modifying the parameters by 10% are comparable to other tree crop model evaluations. While we acknowledge that, depending on the soils and climatic environment, yields may be often water limited, we suggest a relatively simple physiological approach to simulate potential yield, which can be usefully applied to high rainfall environments and is considered as a first step in developing an oil palm model that also simulates water-limited potential yield. To illustrate the application possibil- ities of the model, PALMSIM was used to create a potential yield map for Indonesia and Malaysia by sim- ulating the growth and yield at a resolution of 0.1?. This map of potential yield is considered as a first step towards a decision support tool that can identify potentially productive, but at the moment degraded sites in Indonesia and Malaysia. ?
Resumo:
El Niño phenomenon is the leading mode of sea surface temperature interannual variability. It can affect weather patterns worldwide and therefore crop production. Crop models are useful tools for impact and predictability applications, allowing to obtain long time series of potential and attainable crop yield, unlike to available time series of observed crop yield for many countries. Using this tool, crop yield variability in a location of Iberia Peninsula (IP) has been previously studied, finding predictability from Pacific El Niño conditions. Nevertheless, the work has not been done for an extended area. The present work carries out an analysis of maize yield variability in IP for the whole twenty century, using a calibrated crop model at five contrasting Spanish locations and reanalyses climate datasets to obtain long time series of potential yield. The study tests the use of reanalysis data for obtaining only climate dependent time series of crop yield for the whole region, and to use these yield to analyze the influences of oceanic and atmospheric patterns. The results show a good reliability of reanalysis data. The spatial distribution of the leading principal component of yield variability shows a similar behaviour over all the studied locations in the IP. The strong linear correlation between El Niño index and yield is remarkable, being this relation non-stationary on time, although the air temperature-yield relationship remains on time, being the highest influences during grain filling period. Regarding atmospheric patterns, the summer Scandinavian pattern has significant influence on yield in IP. The potential usefulness of this study is to apply the relationships found to improving crop forecasting in IP.
Resumo:
Limitations on maximum transpiration rates, which are commonly observed as midday stomatal closure, have been observed even under well-watered conditions. Such limitations may be caused by restricted hydraulic conductance in the plant or by limited supply of water to the plant from uptake by the roots. This behaviour would have the consequences of limiting photosynthetic rate, increasing transpiration efficiency, and conserving soil water. A key question is whether the conservation of water will be rewarded by sustained growth during seed fill and increased grain yield. This simulation analysis was undertaken to examine consequences on sorghum yield over several years when maximum transpiration rate was imposed in a model. Yields were simulated at four locations in the sorghum-growing area of Australia for 115 seasons at each location. Mean yield was increased slightly ( 5 - 7%) by setting maximum transpiration rate at 0.4 mm h(-1). However, the yield increase was mainly in the dry, low-yielding years in which growers may be more economically vulnerable. In years with yield less than similar to 450 g m(-2), the maximum transpiration rate trait resulted in yield increases of 9 - 13%. At higher yield levels, decreased yields were simulated. The yield responses to restricted maximum transpiration rate were associated with an increase in efficiency of water use. This arose because transpiration was reduced at times of the day when atmospheric demand was greatest. Depending on the risk attitude of growers, incorporation of a maximum transpiration rate trait in sorghum cultivars could be desirable to increase yields in dry years and improve water use efficiency and crop yield stability.
Resumo:
The effect of interspecific heterosis in crosses between Medicago sativa subsp. sativa and M. sativa subsp. falcata was assessed. Three sativa and 3 falcata plants were crossed in a diallel design. Progeny dry matter yield and natural plant height were assessed in a replicated field experiment at Gatton, Queensland. Yield data were analysed using the method of residual maximum likelihood (REML) and Griffing's model 1. There were significant differences between the reciprocal, general combining ability (GCA), and specific combining ability (SCA) effects. As expected, S-1 populations were lower yielding than their respective intraspecific cross and falcata x falcata crosses were significantly lower yielding than sativa x sativa crosses. Some of the interspecific crosses indicated substantial SCA effects, yielding at least as well as the best sativa x sativa crosses. We have demonstrated the potential usefulness of unselected M. sativa subsp. falcata as a heterotic group in the improvement of yield in northern Australian adapted lucerne material, and discuss how it could be incorporated into future breeding to overcome the yield stagnation currently being experienced in Australian programs.
Resumo:
Hybrid matrices of polysiloxane-polyvinyl alcohol (POS-PVA) were prepared by sol-gel technique using different concentrations of the organic component (polyvinyl alcohol, PVA) in the synthesis medium. The goal was to prepare carriers for immobilizing enzyme by taking into consideration properties as hardness, mean pore diameter, specific surface area and pore size distribution. The matrices were activated with sodium metaperiodate to render functional groups for binding the lipase from Candida rugosa, used here as a study model. Results showed that low proportion of PVA gave POS-PVA with low surface area and pore volume, although with higher hardness. The chemical activation decreased the pore volume and increased the pore size with a decrease on the surface area of about 60-75%. The matrices for enzyme immobilization were chosen considering the best combination of high surface area and hardness. Thus, the POS-PVA prepared with 5.56 x 10(-5) M of PVA with a surface area of 123 m(2)/g and hardness of 71 HV (50 gf 30 s) was shown to be suitable to immobilize the lipase, with an immobilization yield of about 40%. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Lipases from different sources, Pseudomonas fluorescens (AK lipase), Burkholderia cepacia (PS lipase), Penicillium camembertii (lipase G) and Porcine pancreas lipase (PPL), previously immobilized on epoxy SiO(2)-PVA, were screened for the synthesis of xylitol monoesters by esterification of the protected xylitol using oleic acid as acyl donor group. Among all immobilized derivatives, the highest esterification yield was achieved by P. camembertii lipase, showing to be attractive alternative to bulk chemical routes to satisfy increasing commercial demands. Further experiments were performed to determine the influence of fatty acids chain size on the reaction yield and the feasibility of using non-conventional heating systems (microwave and ultrasound irradiations) to enhance the reaction rate. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Maize (Zea mays L.) is a very important cereal to world-wide economy which is also true for Brazil, particularly in the South region. Grain yield and plant height have been chosen as important criteria by breeders and farmers from Santa Catarina State (SC), Brazil. The objective of this work was to estimate genetic-statistic parameters associated with genetic gain for grain yield and plant height, in the first cycle of convergent-divergent half-sib selection in a maize population (MPA1) cultivated by farmers within the municipality of Anchieta (SC). Three experiments were carried out in different small farms at Anchieta using low external agronomic inputs; each experiment represented independent samples of half-sib families, which were evaluated in randomized complete blocks with three replications per location. Significant differences among half-sib families were observed for both variables in all experiments. The expected responses to truncated selection of the 25% better families in each experiment were 5.1, 5.8 and 5.2% for reducing plant height and 3.9, 5.7 and 5.0% for increasing grain yield, respectively. The magnitudes of genetic-statistic parameters estimated evidenced that the composite population MPA1 exhibits enough genetic variability to be used in cyclical process of recurrent selection. There were evidences that the genetic structure of the base population MPA1, as indicated by its genetic variability, may lead to expressive changes in the traits under selection, even under low selection pressure.
Resumo:
Expressed sequence tags derived markers have a great potential to be used in functional map construction and QTL tagging. In the present work, sugarcane genomic probes and expressed sequence tags having homology to genes, mostly involved in carbohydrate metabolism were used in RFLP assays to identify putative QTLs as well as their epistatic interactions for fiber content, cane yield, pol and tones of sugar per hectare, at two crop cycles in a progeny derived from a bi-parental cross of sugarcane elite materials. A hundred and twenty marker trait associations were found, of which 26 at both crop cycle and 32 only at first ratoon cane. A sucrose synthase derived marker was associated with a putative QTL having a high negative effect on cane yield and also with a QTL having a positive effect on Pol at both crop cycles. Fifty digenic epistatic marker interactions were identified for the four traits evaluated. Of these, only two were observed at both crop cycles.
Resumo:
Understanding resource capture can help design appropriate species combinations, planting designs and management. Leaf area index (LAI) and its longevity are the most important factors defining dry matter production and thus growth and productivity. The ecophysiological modifications and yield of rubber (Hevea spp.) in an agroforestry system (AFS) with beans (Phaseolus vulgaris L.) were studied. The experiment was established in Southeast-Brazil, with three rubber cultivars: IAN 3087, RRIM 600 and RRIM 527. The AFS comprised double rows of rubber trees along with beans sown in autumn and winter seasons in 1999. There was about 50% higher rubber yield per tree in the AFS than the rubber monoculture. Trees within the AFS responded to higher solar radiation availability with higher LAI and total foliage area, allowing its greater interception. All three cultivars had higher LAI in the AFS than monoculture, reaching maximum values in the AFS between April and May of 3.17 for RRIM 527; 2.83 for RRIM 600 and 2.28 for IAN 3087. The maximum LAI values for monocrop rubber trees were: 2.65, 2.62 and 1.99, respectively, for each cultivar. Rubber production and LAI were positively correlated in both the AFS and monoculture but leaf fall of rubber trees in the AFS was delayed and total phytomass was larger. It is suggested that trees in the AFS were under exploited and could yield more without compromising their life cycle if the tapping system was intensified. This shows how knowledge of LAI can be used to manage tapping intensity in the field, leading to higher rubber yield.
Resumo:
Natural forest remnants have been set as seed production fields to supply seeds of native tree species for tropical forest restoration, but the effect of different forest types on seed production has not been accessed to date for palm species. In this work, we studied seed development, yield, and quality of two palm species in different tropical forest types in SE Brazil. Seed production of palmiteiro (Euterpe edulis) and queen-palm (Syagrus romanzoffiana), which are largely used in restoration efforts due to their importance for vertebrate frugivores, were studied in natural remnants of Atlantic Rainforest, Restinga Forest, Seasonally Dry Forest, and Cerrado Forest. We studied seed development, yield, size, and germination of seed lots produced in some of these forest types, including seeds harvested in 2008, 2009, and both years. Seed yield and quality, as well as seed dry mass in 2009, were higher for palmiteiro seeds produced in the Atlantic Rainforest, while queen-palm seeds produced at the Restinga Forest showed the higher mass and yield, but the lowest physiological potential. Consequently, these natural differences of seed yield and quality have to be taken into account for establishing standards for seed commercialization and analysis, seed pricing, and seedling production in forest nurseries.
Resumo:
An efficient system is now in place for improving diverse sugarcane cultivars by genetic transformation, that is, the insertion of useful new genes into single cells followed by the regeneration of genetically modified (transgenic) plants. The method has already been used to introduce genes for resistance to several major diseases, insect pests and a herbicide, Field testing has begun, and research is underway to identify other genes for increased environmental stress resistance, agronomic efficiency and yield of sucrose or other valuable products. Experience in other crops has shown that genetically improved varieties which provide genuine environmental and consumer benefits are welcomed by producers and consumers. Substantial research is still needed, but these new gene technologies will reshape the sugar industry and determine the international competitive efficiency of producers.
Resumo:
Introduction. The hippocampal formation is a specific structure in the brain where neurogenesis occurs throughout adulthood and in which the neuronal cell loss causes various demential states. The main goal of this study was to verify whether fetal neural progenitor cells (NPCs) from transgenic rats expressing green fluorescent protein (GFP) retain the ability to differentiate into neuronal cells and to integrate into the hippocampal circuitry after transplantation. Methods. NPCs were isolated from E14 (gestational age: 14 days postconception) transgenic-Lewis and wild-type Sprague-Dawley rat embryos. Wild-type and transgenic cells were expanded and induced to differentiate into a neuronal lineage in vitro. Immunocytochemical and electrophysiological analysis were performed in both groups. GFP-expressing cells were implanted into the hippocampus and recorded electrophysiologically 3 months thereafter. Immunohistochemical analysis confirmed neuronal differentiation, and the yield of neuronal cells was determined stereologically. Results. NPCs derived from wild-type and transgenic animals are similar regarding their ability to generate neuronal cells in vitro. Neuronal maturity was confirmed by immunocytochemistry and electrophysiology, with demonstration of voltage-gated ionic currents, firing activity, and spontaneous synaptic currents. GFP-NPCs were also able to differentiate into mature neurons after implantation into the hippocampus, where they formed functional synaptic contacts. Conclusions. GFP-transgenic cells represent an important tool in transplantation studies. Herein, we demonstrate their ability to generate functional neurons both in vitro and in vivo conditions. Neurons derived from fetal NPCs were able to integrate into the normal hippocampal circuitry. The high yield of mature neurons generated render these cells important candidates for restorative approaches based on cell therapy.