946 resultados para YTTRIUM ADDITION
Resumo:
Solid Ln-OHCO3-DMCP compounds, where Ln represents lanthanides (III) and yttrium (III) ions and DMCP is the anion 4-dimethylaminocinnamylidenepyruvate, have been prepared. Thermogravimetry, derivative thermogravimetry (TG, DTG), differential scanning calorimetry (DSC), x-Ray diffraction powder patterns and elemental analysis have been used to characterize the compounds. The thermal stability as well as the thermal decomposition of these compounds were studied using an alumina crucible in an air atmosphere.
Resumo:
Solid state cinnamylidenepyruvate of trivalent lanthanides (except for promethium) and yttrium, were prepared. Thermogravimetry, derivative thermogravimetry (TG, DTG), differential scanning calorimetry (DSC), X-ray diffraction powder patterns and complexometry were used to characterize and to study the thermal behavior of these compounds in a dynamic CO2 atmosphere. The results obtained showed significative differences on the thermal stability and thermal decomposition of these compounds, with regard to the thermal behavior study in a dynamic air atmosphere.
Resumo:
The Mg-vacancy binding free enthalpy of Al-Cr solid solution alloys with Mg addition was calculated by electrical resistivity measurements. The obtained value is lower than that obtained for dilute Al-Mg alloys with almost the same Mg content and may be attributed to the diffusion of Mg.
Thermal decomposition of solid state compounds of lanthanide and yttrium benzoates in CO2 atmosphere
Resumo:
Solid-state Ln-Bz compounds, where Ln stands for trivalent lanthanides and Bz is benzoate have been synthesized. Simultaneous thermogravimetric and differential thermal analysis in a CO2 atmosphere were used to study the thermal decomposition of these compounds.
Resumo:
In dentistry, yttrium partially stabilized zirconia (ZrO2) has become one of the most attractive ceramic materials for prosthetic applications. The aim of this series of studies was to evaluate whether certain treatments used in the manufacturing process, such as sintering time, color shading or heat treatment of zirconia affect the material properties. Another aim was to evaluate the load-bearing capacity and marginal fit of manually copy-milled custom-made versus prefabricated commercially available zirconia implant abutments. Mechanical properties such as flexural strength and surface microhardness were determined for green-stage milled and sintered yttrium partially stabilized zirconia after different sintering time, coloring process and heat treatments. Scanning electron microscope (SEM) was used for analyzing the possible changes in surface structure of zirconia material after reduced sintering time, coloring and heat treatments. Possible phase change from the tetragonal to the monoclinic phase was evaluated by X-ray diffraction analysis (XRD). The load-bearing capacity of different implant abutments was measured and the fit between abutment and implant replica was examined with SEM. The results of these studies showed that the shorter sintering time or the thermocycling did not affect the strength or surface microhardness of zirconia. Coloring of zirconia decreased strength compared to un-colored control zirconia, and some of the colored zirconia specimens also showed a decrease in surface microhardness. Coloring also affected the dimensions of zirconia. Significantly decreased shrinkage was found for colored zirconia specimens during sintering. Heat treatment of zirconia did not seem to affect materials’ mechanical properties but when a thin coating of wash and glaze porcelain was fired on the tensile side of the disc the flexural strength decreased significantly. Furthermore, it was found that thermocycling increased the monoclinic phase on the surface of the zirconia. Color shading or heat treatment did not seem to affect phase transformation but small monoclinic peaks were detected on the surface of the heat treated specimens with a thin coating of wash and glaze porcelain on the opposite side. Custom-made zirconia abutments showed comparable load-bearing capacity to the prefabricated commercially available zirconia abutments. However, the fit of the custom-made abutments was less satisfactory than that of the commercially available abutments. These studies suggest that zirconia is a durable material and other treatments than color shading used in the manufacturing process of zirconia bulk material does not affect the material’s strength. The decrease in strength and dimensional changes after color shading needs to be taken into account when fabricating zirconia substructures for fixed dental prostheses. Manually copy-milled custom-made abutments have acceptable load-bearing capacity but the marginal accuracy has to be evaluated carefully.
Resumo:
Artificial insemination is routinely used in the swine industry to reduce the costs of production through to increase the efficiency of the refrigerated boar semen process. The objective of this study was to evaluate the effect of different levels of cysteine (CYS) added to the Beltsville Thawing Solution (BTS) extender semen during cooling for up to 72 hours. Ejaculated from three boars were collected with the gloved-hand technique and semen aliquots were diluted in BTS as follow: BTS only (BTS), BTS + 0.1mM cysteine (CYS0.1), BTS + 0.5mM cysteine (CYS0.5), BTS + 1.0mM cysteine (CYS1.0), BTS + 2.5mM cysteine (CYS2.5), BTS + 5.0mM cysteine (CYS5.0), BTS + 10.0mM cysteine (CYS10.0), and BTS + 20.0mM cysteine (CYS20.0). Evaluation of sperm integrity were analyzed using 0.5mg/ml propidium iodide (plasma membrane), 100µg/ml isothiocynate-conjugated Pisum sativun agglutinin (acrosomal membrane) and 153µM 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolyl carbocyanine iodide (mitochondria potential) after semen dilution at specific times (0, 24, 48 and 72 hours). Additionally, we also evaluated the effects of 5.0 mM CYS addition in the BTS extender on the maintenance of sperm quality and their influence on fertility in the swine production. After artificial insemination, animals were evaluated based on the estrous return and the number of piglet's born. Cysteine at concentrations of 10.0 and 20.0mM resulted in more pronounced reductions even at the time zero. Semen viability decreased to levels below 10% at these high levels of CYS in the first 24 hour of storage at 17ºC. At the end of the storage time, less than 65% of sperm cells had intact plasma membrane in all groups. The sperm viability decreased significantly when the semen was added at high concentrations of CYS (time "0"; CYS10.0 and CYS20.0; p<0.05), when compared to the other CYS concentrations. The BTS (10.20±0.39) treated group showed a lower rate of estrus return when compared to other (BTSCYS; 86.05±039), and it showed also the highest total number of piglets borne per treatment (12.71±3.38 vs. 9.00±3.38, respectively). In conclusion, the addition of CYS in the BTS semen extender did not maintain spermatic viability of boar cooled spermatozoa and it results in a higher percentage of return to estrus and lower number of piglets borne.
Resumo:
Sixty Piaractus mesopotamicus Holmberg, 1887 (pacu) fry fed a diet containing 0, 50, 100 and 200 mg ascorbic acid/kg dry feed were studied to evaluate the effect on parasitic infestation by the monogenean Anacanthorus penilabiatus Boeger, Husak and Martins, 1995 (Monogenea: Dactylogyridae) for a period of 24 weeks. The temperature of the aquaria was measured daily and remained between 28 and 31oC. At the beginning of the experiment, fish showed 6.15 ± 0.33 cm standard length and 8.64 ± 1.62 g average body weight. A sample of fish was examined and showed 43 ± 17 monogeneans per fish. At the end of the experiment, the gills of control and vitamin C-treated fish were collected for parasite counts. Control fish had 42.5 parasites per fish, a significantly higher number (P<0.05) when compared with fish fed vitamin C, that showed 16.5 parasites per fish. Ascorbic acid fortification in the food promoted an increase in fish resistance to parasites. It is suggested that an optimum level of 139 mg/kg vitamin C supplementation either elicited better nutritional conditions by stimulating the appetite of the fish or improved the immune response.
Resumo:
The need for industries to remain competitive in the welding business, has created necessity to develop innovative processes that can exceed customer’s demand. Significant development in improving weld efficiency, during the past decades, still have their drawbacks, specifically in the weld strength properties. The recent innovative technologies have created smallest possible solid material known as nanomaterial and their introduction in welding production has improved the weld strength properties and to overcome unstable microstructures in the weld. This study utilizes a qualitative research method, to elaborate the methods of introducing nanomaterial to the weldments and the characteristic of the welds produced by different welding processes. The study mainly focuses on changes in the microstructural formation and strength properties on the welded joint and also discusses those factors influencing such improvements, due to the addition of nanomaterials. The effect of nanomaterial addition in welding process modifies the physics of joining region, thereby, resulting in significant improvement in the strength properties, with stable microstructure in the weld. The addition of nanomaterials in the welding processes are, through coating on base metal, addition in filler metal and utilizing nanostructured base metal. However, due to its insignificant size, the addition of nanomaterials directly to the weld, would poses complications. The factors having major influence on the joint integrity are dispersion of nanomaterials, characteristics of the nanomaterials, quantity of nanomaterials and selection of nanomaterials. The addition of nanomaterials does not affect the fundamental properties and characteristics of base metals and the filler metal. However, in some cases, the addition of nanomaterials lead to the deterioration of the joint properties by unstable microstructural formations. Still research are ongoing to achieve high joint integrity, in various materials through different welding processes and also on other factors that influence the joint strength.
Resumo:
The purpose of this study was to investigate the effect of supplementary vitamin D therapy in addition to amitriptyline on the frequency of migraine attacks in pediatric migraine patients. Fifty-three children 8-16 years of age and diagnosed with migraine following the International Headache Society 2005 definition, which includes childhood criteria, were enrolled. Patients were classified into four groups on the basis of their 25-hydroxyvitamin D [25(OH)D] levels. Group 1 had normal 25(OH)D levels and received amitriptyline therapy alone; group 2 had normal 25(OH)D levels and received vitamin D supplementation (400 IU/day) plus amitriptyline; group 3 had mildly deficient 25(OH)D levels and received amitriptyline plus vitamin D (800 IU/day); and group 4 had severely deficient 25(OH)D levels and was given amitriptyline plus vitamin D (5000 IU/day). All groups were monitored for 6 months, and the number of migraine attacks before and during treatment was determined. Calcium, phosphorus alkaline phosphatase, parathormone, and 25(OH)D levels were also determined before and during treatment. Results were compared between the groups. Data obtained from the groups were analyzed using one-way analysis of variance. The number of pretreatment attacks in groups 1 to 4 was 7±0.12, 6.8±0.2, 7.3±0.4, and 7.2±0.3 for 6 months, respectively (all P>0.05). The number of attacks during treatment was 3±0.25, 1.76±0.37 (P<0.05), 2.14±0.29 (P<0.05), and 1.15±0.15 (P<0.05), respectively. No statistically significant differences in calcium, phosphorus, alkaline phosphatase, or parathormone levels were observed (P>0.05). Vitamin D given in addition to anti-migraine treatment reduced the number of migraine attacks.
Resumo:
The thermotolerant capacity of several lactic acid bacteria strains isolated from cooked commercial sausages was determined. Four strains were positively identified as Lactobacillus plantarum, Lactobacillus curvatus, Pediococcus pentosaceus and Pediococcus acidilacti, after surviving thermal treatment (70 °C during 60 minutes). Thermotolerant strains were inoculated in sausage batters before cooking in order to determine their effect on color, texture, acceptance and inhibition of Enterobacteria during 12 days at 8 °C. No significant effect of the inoculated strains was detected on color parameters. Textural profile parameters, cohesiveness and resilience, were not affected by the inoculation of thermotolerant lactic acid bacteria, but L. curvatus sausages resulted softer than the rest of the treatments. Samples inoculated with L. curvatus also obtained the lowest scores for the sensory attributes evaluated, with the remaining treatments causing no unfavorable effects on sausage acceptance. There was a reduction in enterobacterial counts after 12 days of cold storage in inoculated samples. The performance of inoculated lactic acid bacteria strains can be explained in a similar way as that of starter cultures in dry-fermented sausages, where the growth in nests impairs other pathogenic microorganisms present in the rest of the sausage, since environmental conditions and the early inoculation of these thermotolerant strains favor them to become the dominant flora.
Resumo:
The aim of the study was to evaluate the influence of the chitosan addition on the quality of vacuum packaged pork sausages. A variant of the product was elaborated with 1% (w/w) of chitosan in lactic acid solution at 1% (v/v) and it was compared to a control. Sausages were mechanically stuffed and manually conformed and vacuum packaged. Sausages were stored at 4 °C and microbiological evaluations, pH measurements, texture profile analysis and sensorial evaluation were performed. The chitosan addition in the formulation of the sausages did not reduce the microbiological counts. The pH values obtained in all samples were similar, which suggests that the chitosan addition did not influence the pH values of sausages. The added chitosan did not affect significantly (p < 0.05) the results of the texture profile analysis and sensorial attributes and therefore, the overall acceptance of the sausages.
Resumo:
Starches and gums are hydrocolloids frequently used in food systems to provide proper texture, moisture, and water mobility. Starch-gum interaction in food systems can change the starch granule swelling and its gelatinization and rheological properties. In this study, the effect of the addition of xanthan gum (XG), sodium carboxymethyl cellulose (SCMC), and carrageenan (CAR) at the concentrations of the 0.15, 0.25, 0.35 and 0.45% (w/v) on the pasting, thermal, and rheological properties of cassava starch was studied. The swelling power (SP) and the scanning electron microscopy (SEM) of the starch gels were also evaluated. The results obtained showed that xanthan gum (XG) had a strong interaction with the cassava starch penetrating between starch granules causing increase in pasting viscosities, SP, storage and loss (G', and G", respectively) modulus and reduction in the setback of the starch; sodium carboxymethyl cellulose (SCMC) greatly increased the pasting viscosities, the SP, and the storage and loss (G', and G", respectively) modulus of the starch-mixtures, mainly due to its greater capacity to hold water and not due to the interaction with cassava starch. Carrageenan (CAR) did not change any of the starch properties since there was no interaction between this gum and cassava starch at the concentrations used.
Resumo:
The aim of this study was to verify the influence of the addition of the enzyme xylanase (four concentrations: 0, 4, 8, and 12 g.100 kg-1 flour) on the characteristics of loaf bread made with white wheat flour or whole grain wheat flour. Breads made from white flour and added with xylanase had higher specific volumes than those of the control sample (no enzyme); however, the specific volume did not differ significantly (p < 0.05) among the breads with different enzyme concentrations. All formulations made from whole grain wheat flour and added with xylanase also had specific volumes significantly higher than those of the control sample, and the highest value was found for the 8 g xylanase.100 kg-1 flour formulation. With respect to moisture content, the formulations with different enzyme concentrations showed small significant differences when compared to the control samples. In general, breads made with the addition of 8 g enzyme.100 kg-1 flour had the lowest firmness values, thus presenting the best technological characteristics.
Resumo:
The effect of inulin addition and starters (Kefir grains or commercial starter culture) on the microbial viability, texture, and chemical characteristics of Kefir beverages prepared with whole or skim milk was evaluated during refrigerated storage. The type of starter did not influence microbial viability during the storage of the beverages, but the chemical and textural changes (decreases in pH, lactose concentration, and inulin and increased acidity, firmness, and syneresis) were more pronounced in the formulations fermented with grains than those fermented with the starter culture. The addition of inulin did not influence acidity or viability of lactic acid bacteria, but in general, its effect on the survival of acetic acid bacteria, Lactococcus and yeasts, firmness, and syneresis depended on the type of milk and starter culture used. Generally, the yeast, acetic acid bacteria, and Leuconostoc counts increased or remained unchanged, while the total population of lactic acid bacteria and Lactococcus were either reduced by 1 to 2 logs or remained unchanged during storage.
Resumo:
The aim of this study was to determine the colorimetric and sensory characteristics of a fermented cured sausage containing ostrich meat (Struthio camelus) and pork meat. Four treatments were performed: one with no ostrich meat (TC) and the others containing 19.08 (T1), 38.34 (T2), and 57.60% (T3) of ostrich meat and pork meat. Colorimetric analyses were measuring L*, a*, b*, C*, and hº. Sensory analysis was conducted assessing color, aroma, flavor, and texture at the end of the sausages' processing. The sausages containing ostrich meat were statistically different from the control in the instrumental colorimetric analysis. In the sensory analysis, no significant differences were observed between the treatments for aroma, flavor, and texture. However, significant differences were found in the color of the sausages due to the high myoglobin content present in the ostrich meat, which resulted in a very dark color in the treatment with the highest percentage of this type of meat.