939 resultados para X-ray radiation sensor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the introduction of fluoride as the main anticaries agent used in preventive dentistry, and perhaps an increase in fluoride in our food chain, dental fluorosis has become an increasing world-wide problem. Visible signs of fluorosis begin to become obvious on the enamel surface as opacities, implying some porosity in the tissue. The mechanisms that conduct the formation of fluorotic enamel are unknown, but should involve modifications in the basic physical-chemistry reactions of demineralization and remineralisation of the enamel of the teeth, which is the same reaction of formation of the enamel's hydroxyapatite (HAp) in the maturation phase. The increase of the amount of fluoride inside of the apatite will result in gradual increase of the lattice parameters. The aim of this work is to characterize the healthy and fluorotic enamel in human tooth using Synchrotron X-ray diffraction. All the scattering profile measurements were carried out at the X-ray diffraction beamline (XRD1) at the Brazilian Synchrotron Light Laboratory-LNLS, Campinas, Brazil. X-ray diffraction experiments were performed both in powder samples and polished surfaces. The powder samples were analyzed to obtain the characterization of a typical healthy enamel pattern. The polished surfaces were analyzed in specific areas that have been identified as fluorotic ones. X-ray diffraction data were obtained for all samples and these data were compared with the control samples and also with the literature data. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context. The angular diameter distances toward galaxy clusters can be determined with measurements of Sunyaev-Zel'dovich effect and X-ray surface brightness combined with the validity of the distance-duality relation, D-L(z)(1 + z)(2)/D-A(z) = 1, where D-L(z) and D-A(z) are, respectively, the luminosity and angular diameter distances. This combination enables us to probe galaxy cluster physics or even to test the validity of the distance-duality relation itself. Aims. We explore these possibilities based on two different, but complementary approaches. Firstly, in order to constrain the possible galaxy cluster morphologies, the validity of the distance-duality relation (DD relation) is assumed in the Lambda CDM framework (WMAP7). Secondly, by adopting a cosmological-model-independent test, we directly confront the angular diameters from galaxy clusters with two supernovae Ia (SNe Ia) subsamples (carefully chosen to coincide with the cluster positions). The influence of the different SNe Ia light-curve fitters in the previous analysis are also discussed. Methods. We assumed that eta is a function of the redshift parametrized by two different relations: eta(z) = 1 +eta(0)z, and eta(z) = 1 + eta(0)z/(1 + z), where eta(0) is a constant parameter quantifying the possible departure from the strict validity of the DD relation. In order to determine the probability density function (PDF) of eta(0), we considered the angular diameter distances from galaxy clusters recently studied by two different groups by assuming elliptical and spherical isothermal beta models and spherical non-isothermal beta model. The strict validity of the DD relation will occur only if the maximum value of eta(0) PDF is centered on eta(0) = 0. Results. For both approaches we find that the elliptical beta model agrees with the distance-duality relation, whereas the non-isothermal spherical description is, in the best scenario, only marginally compatible. We find that the two-light curve fitters (SALT2 and MLCS2K2) present a statistically significant conflict, and a joint analysis involving the different approaches suggests that clusters are endowed with an elliptical geometry as previously assumed. Conclusions. The statistical analysis presented here provides new evidence that the true geometry of clusters is elliptical. In principle, it is remarkable that a local property such as the geometry of galaxy clusters might be constrained by a global argument like the one provided by the cosmological distance-duality relation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hard X-ray band (10 - 100 keV) has been only observed so far by collimated and coded aperture mask instruments, with a sensitivity and an angular resolution lower than two orders of magnitude as respects the current X-ray focusing telescopes operating below 10 - 15 keV. The technological advance in X-ray mirrors and detection systems is now able to extend the X-ray focusing technique to the hard X-ray domain, filling the gap in terms of observational performances and providing a totally new deep view on some of the most energetic phenomena of the Universe. In order to reach a sensitivity of 1 muCrab in the 10 - 40 keV energy range, a great care in the background minimization is required, a common issue for all the hard X-ray focusing telescopes. In the present PhD thesis, a comprehensive analysis of the space radiation environment, the payload design and the resulting prompt X-ray background level is presented, with the aim of driving the feasibility study of the shielding system and assessing the scientific requirements of the future hard X-ray missions. A Geant4 based multi-mission background simulator, BoGEMMS, is developed to be applied to any high energy mission for which the shielding and instruments performances are required. It allows to interactively create a virtual model of the telescope and expose it to the space radiation environment, tracking the particles along their path and filtering the simulated background counts as a real observation in space. Its flexibility is exploited to evaluate the background spectra of the Simbol-X and NHXM mission, as well as the soft proton scattering by the X-ray optics and the selection of the best shielding configuration. Altough the Simbol-X and NHXM missions are the case studies of the background analysis, the obtained results can be generalized to any future hard X-ray telescope. For this reason, a simplified, ideal payload model is also used to select the major sources of background in LEO. All the results are original contributions to the assessment studies of the cited missions, as part of the background groups activities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural stones have been widely used in the construction field since antiquity. Building materials undergo decay processes due to mechanical,chemical, physical and biological causes that can act together. Therefore an interdisciplinary approach is required in order to understand the interaction between the stone and the surrounding environment. Utilization of buildings, inadequate restoration activities and in general anthropogenic weathering factors may contribute to this degradation process. For this reasons, in the last few decades new technologies and techniques have been developed and introduced in the restoration field. Consolidants are largely used in restoration and conservation of cultural heritage in order to improve the internal cohesion and to reduce the weathering rate of building materials. It is important to define the penetration depth of a consolidant for determining its efficacy. Impregnation mainly depends on the microstructure of the stone (i.e. porosity) and on the properties of the product itself. Throughout this study, tetraethoxysilane (TEOS) applied on globigerina limestone samples has been chosen as object of investigation. After hydrolysis and condensation, TEOS deposits silica gel inside the pores, improving the cohesion of the grains. X-ray computed tomography has been used to characterize the internal structure of the limestone samples,treated and untreated with a TEOS-based consolidant. The aim of this work is to investigate the penetration depth and the distribution of the TEOS inside the porosity, using both traditional approaches and advanced X-ray tomographic techniques, the latter allowing the internal visualization in three dimensions of the materials. Fluid transport properties and porosity have been studied both at macroscopic scale, by means of capillary uptake tests and radiography, and at microscopic scale,investigated with X-ray Tomographic Microscopy (XTM). This allows identifying changes in the porosity, by comparison of the images before and after the treatment, and locating the consolidant inside the stone. Tests were initially run at University of Bologna, where characterization of the stone was carried out. Then the research continued in Switzerland: X-ray tomography and radiography were performed at Empa, Swiss Federal Laboratories for Materials Science and Technology, while XTM measurements with synchrotron radiation were run at Paul Scherrer Institute in Villigen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: To quantify the late dose-related responses of the rat cervical spinal cord to X-ray irradiations by an array of microbeams or by a single millimeter beam. MATERIALS AND METHODS: Necks of anesthetized rats were irradiated transversely by an 11mm wide array of 52 parallel, 35μm wide, vertical X-ray microbeams, separated by 210μm intervals between centers. Comparison was made with rats irradiated with a 1.35mm wide single beam of similar X-rays. Rats were killed when paresis developed, or up to 383days post irradiation (dpi). RESULTS: Microbeam peak/valley doses of ≈357/12.7Gy to 715/25.4Gy to an 11mm long segment of the spinal cord, or single beam doses of ≈146-454Gy to a 1.35mm long segment caused foreleg paresis and histopathologically verified spinal cord damage; rats exposed to peak/valley doses up to 253/9Gy were paresis-free at 383dpi. CONCLUSIONS: Whereas microbeam radiation therapy [MRT] for malignant gliomas implanted in rat brains can be safe, palliative or curative, the high tolerance of normal rat spinal cords to similar microbeam exposures justifies testing MRT for autochthonous malignancies in the central nervous system of larger animals with a view to subsequent clinical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Purpose: To further evaluate the use of microbeam irradiation (MBI) as a potential means of non-invasive brain tumor treatment by investigating the induction of a bystander effect in non-irradiated tissue. Methods: Adult rats were irradiated with 35 or 350 Gy at the European Synchotron Research Facility (ESRF), using homogenous (broad beam) irradiation (HI) or a high energy microbeam delivered to the right brain hemisphere only. The proteome of the frontal lobes were then analyzed using two-dimensional electrophoresis (2-DE) and mass spectrometry. Results: HI resulted in proteomic responses indicative of tumourigenesis; increased albumin, aconitase and triosphosphate isomerase (TPI), and decreased dihydrolipoyldehydrogenase (DLD). The MBI bystander effect proteomic changes were indicative of reactive oxygen species mediated apoptosis; reduced TPI, prohibitin and tubulin and increased glial fibrillary acidic protein (GFAP). These potentially anti-tumourigenic apoptotic proteomic changes are also associated with neurodegeneration. However the bystander effect also increased heat shock protein (HSP) 71 turnover. HSP 71 is known to protect against all of the neurological disorders characterized by the bystander effect proteome changes. Conclusions: These results indicate that the collective interaction of these MBI-induced bystander effect proteins and their mediation by HSP 71, may confer a protective effect which now warrants additional experimental attention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this work was the understanding of microbeam radiation therapy at the ESRF in order to find the best compromise between curing of tumors and sparing of normal tissues, to obtain a better understanding of survival curves and to report its efficiency. This method uses synchrotron-generated x-ray microbeams. Rats were implanted with 9L gliosarcomas and the tumors were diagnosed by MRI. They were irradiated 14 days after implantation by arrays of 25 microm wide microbeams in unidirectional mode, with a skin entrance dose of 625 Gy. The effect of using 200 or 100 microm center-to-center spacing between the microbeams was compared. The median survival time (post-implantation) was 40 and 67 days at 200 and 100 microm spacing, respectively. However, 72% of rats irradiated at 100 microm spacing showed abnormal clinical signs and weight patterns, whereas only 12% of rats were affected at 200 microm spacing. In parallel, histological lesions of the normal brain were found in the 100 microm series only. Although the increase in lifespan was equal to 273% and 102% for the 100 and 200 microm series, respectively, the 200 microm spacing protocol provides a better sparing of healthy tissue and may prove useful in combination with other radiation modalities or additional drugs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The alveolated structure of the pulmonary acinus plays a vital role in gas exchange function. Three-dimensional (3D) analysis of the parenchymal region is fundamental to understanding this structure-function relationship, but only a limited number of attempts have been conducted in the past because of technical limitations. In this study, we developed a new image processing methodology based on finite element (FE) analysis for accurate 3D structural reconstruction of the gas exchange regions of the lung. Stereologically well characterized rat lung samples (Pediatr Res 53: 72-80, 2003) were imaged using high-resolution synchrotron radiation-based X-ray tomographic microscopy. A stack of 1,024 images (each slice: 1024 x 1024 pixels) with resolution of 1.4 mum(3) per voxel were generated. For the development of FE algorithm, regions of interest (ROI), containing approximately 7.5 million voxels, were further extracted as a working subunit. 3D FEs were created overlaying the voxel map using a grid-based hexahedral algorithm. A proper threshold value for appropriate segmentation was iteratively determined to match the calculated volume density of tissue to the stereologically determined value (Pediatr Res 53: 72-80, 2003). The resulting 3D FEs are ready to be used for 3D structural analysis as well as for subsequent FE computational analyses like fluid dynamics and skeletonization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ATLS Guidelines recommend single plain radiography of the chest and pelvis as part of the primary survey. Such isolated radiographs, usually obtained by bedside machines, can result in limited, low-quality studies that can adversely affect management. A new digital, low-radiation imaging device, the "Lodox Statscan" (LS), provides full-body anterior and lateral views based on enhanced linear slot-scanning technology in just over 5 minutes. We have the first LS in Europe at our facility. The aim of this study was to compare LS with computed tomographic (CT) scanning, as the gold standard, to determine the sensitivity of LS investigation in detecting injuries to the chest, thoracolumbar spine, and pelvis from our own experience, and to compare our findings with those of conventional radiography in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Lodox-Statscan is a whole-body, skeletal and soft-tissue, low-dose X-ray scanner Anterior-posterior and lateral thoraco-abdominal studies are obtained in 3-5 minutes with only about one-third of the radiation required for conventional radiography. Since its approval by the Food and Drug Administration (FDA) in the USA, several trauma centers have incorporated this technology into their Advanced Trauma Life Support protocols. This review provides a brief overview of the system, and describes the authors' own experience with the system. METHODS: We performed a PubMed search to retrieve all references with 'Lodox' and 'Stat-scan' used as search terms. We furthermore used the google search engine to identify existing alternatives. To the best of our knowledge, this is the only FDA-approved device of its kind currently used in trauma. RESULTS AND CONCLUSION: The intention of our review has been to sensitize the readership that such alternative devices exist. The key message is that low dosage full body radiography may be an alternative to conventional resuscitation room radiography which is usually a prelude to CT scanning (ATLS algorithm). The combination of both is radiation intensive and therefore we consider any reduction of radiation a success. But only the future will show whether LS will survive in the face of low-dose radiation CT scanners and magnetic resonance imaging devices that may eventually completely replace conventional radiography.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A basic prerequisite for in vivo X-ray imaging of the lung is the exact determination of radiation dose. Achieving resolutions of the order of micrometres may become particularly challenging owing to increased dose, which in the worst case can be lethal for the imaged animal model. A framework for linking image quality to radiation dose in order to optimize experimental parameters with respect to dose reduction is presented. The approach may find application for current and future in vivo studies to facilitate proper experiment planning and radiation risk assessment on the one hand and exploit imaging capabilities on the other.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The small trees of gas-exchanging pulmonary airways which are fed by the most distal purely conducting airways are called acini and represent the functional gas-exchanging units. The three-dimensional architecture of the acini has a strong influence on ventilation and particle deposition. Due to the difficulty to identify individual acini on microscopic lung sections the knowledge about the number of acini and their biological parameters like volume, surface area, and number of alveoli per acinus are limited. We developed a method to extract individual acini from lungs imaged by high-resolution synchrotron radiation based X-ray tomographic microscopy and estimated their volume, surface area and number of alveoli. Rat acini were isolated by semiautomatically closing the airways at the transition from conducting to gas-exchanging airways. We estimated a mean internal acinar volume of 1.148mm(3), a mean acinar surface area of 73.9mm(2), and a mean of 8470 alveoli per acinus. Assuming that the acini are similarly sized throughout different regions of the lung, we calculated that a rat lung contains 5470±833 acini. We conclude that our novel approach is well suited for the fast and reliable characterization of a large number of individual acini in healthy, diseased, or transgenic lungs of different species including humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since approximately two thirds of epileptic patients are non-eligible for surgery, local axonal fiber transections might be of particular interest for them. Micrometer to millimeter wide synchrotron-generated X-ray beamlets produced by spatial fractionation of the main beam could generate such fiber disruptions non-invasively. The aim of this work was to optimize irradiation parameters for the induction of fiber transections in the rat brain white matter by exposure to such beamlets. For this purpose, we irradiated cortex and external capsule of normal rats in the antero-posterior direction with a 4 mm×4 mm array of 25 to 1000 µm wide beamlets and entrance doses of 150 Gy to 500 Gy. Axonal fiber responses were assessed with diffusion tensor imaging and fiber tractography; myelin fibers were examined histopathologically. Our study suggests that high radiation doses (500 Gy) are required to interrupt axons and myelin sheaths. However, a radiation dose of 500 Gy delivered by wide minibeams (1000 µm) induced macroscopic brain damage, depicted by a massive loss of matter in fiber tractography maps. With the same radiation dose, the damage induced by thinner microbeams (50 to 100 µm) was limited to their paths. No macroscopic necrosis was observed in the irradiated target while overt transections of myelin were detected histopathologically. Diffusivity values were found to be significantly reduced. A radiation dose ≤ 500 Gy associated with a beamlet size of < 50 µm did not cause visible transections, neither on diffusion maps nor on sections stained for myelin. We conclude that a peak dose of 500 Gy combined with a microbeam width of 100 µm optimally induced axonal transections in the white matter of the brain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phase-sensitive X-ray imaging shows a high sensitivity towards electron density variations, making it well suited for imaging of soft tissue matter. However, there are still open questions about the details of the image formation process. Here, a framework for numerical simulations of phase-sensitive X-ray imaging is presented, which takes both particle- and wave-like properties of X-rays into consideration. A split approach is presented where we combine a Monte Carlo method (MC) based sample part with a wave optics simulation based propagation part, leading to a framework that takes both particle- and wave-like properties into account. The framework can be adapted to different phase-sensitive imaging methods and has been validated through comparisons with experiments for grating interferometry and propagation-based imaging. The validation of the framework shows that the combination of wave optics and MC has been successfully implemented and yields good agreement between measurements and simulations. This demonstrates that the physical processes relevant for developing a deeper understanding of scattering in the context of phase-sensitive imaging are modelled in a sufficiently accurate manner. The framework can be used for the simulation of phase-sensitive X-ray imaging, for instance for the simulation of grating interferometry or propagation-based imaging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first objective of this study was to determine normative digital X-ray radiogrammetry (DXR) values, based on original digital images, in a pediatric population (aged 6-18 years). The second aim was to compare these reference data with patients suffering from distal radius fractures, whereas both cohorts originated from the same geographical region and were evaluated using the same technical parameters as well as inclusion and exclusion criteria. DXR-BMD and DXR-MCI of the metacarpal bones II-IV were assessed on standardized digital hand radiographs, without printing or scanning procedures. DXR parameters were estimated separately by gender and among six age groups; values in the fracture group were compared to age- and gender-matched normative data using Student's t tests and Z scores. In the reference cohort (150 boys, 138 girls), gender differences were found in bone mineral density (DXR-BMD), with higher values for girls from 11 to 14 years and for boys from 15 to 18 years (p < 0.05). Girls had higher normative metacarpal index (DXR-MCI) values than boys, with significant differences at 11-14 years (p < 0.05). In the case-control investigation, the fracture group (95 boys, 69 girls) presented lower DXR-BMD at 15-18 years in boys and 13-16 years in girls vs. the reference cohort (p < 0.05); DXR-MCI was lower at 11-18 years in boys and 11-16 years in girls (p < 0.05). Mean Z scores in the fracture group for DXR-BMD were -0.42 (boys) and -0.46 (girls), and for DXR-MCI were -0.51 (boys) and -0.53 (girls). These findings indicate that the fully digital DXR technique can be accurately applied in pediatric populations ≥ 6 years of age. The lower DXR-BMD and DXR-MCI values in the fracture group suggest promising early identification of individuals with increased fracture risk, without the need for additional radiation exposure, enabling the initiation of prevention strategies to possibly reduce the incidence of osteoporosis later in life.