927 resultados para Wood flour
Resumo:
Environmental inputs can improve the level of innovation by interconnecting them with traditional inputs regarding the properties of materials and processes as a strategic eco-design procedure. Advanced engineered polymer composites are needed to meet the diverse needs of users for high-performance automotive, construction and commodity products that simultaneously maximize the sustainability of forest resources. In the current work, wood polymer composites (WPC) are studied to promote long-term resource sustainability and to decrease environmental impacts relative to those of existing products. A series of polypropylene wood–fiber composite materials having 20, 30, 40 and 50 wt. % of wood–fibers were prepared using twin-screw extruder and injection molding machine. Tensile and flexural properties of the composites were determined. Polypropylene (PP) as a matrix used in this study is a thermoplastic material, which is recyclable. Suitability of the prepared composites as a sustainable product is discussed.
Resumo:
This study focuses on addressing the propagation front movement in a co-current downdraft gasification system. A detailed single particle modeling analysis extended to the packed bed reactor is used to compare with the experimental measurement as well those available in the literature. This model for biomass gasification systems considered pyrolysis process, gas phase volatile combustion, and heterogeneous char reactions along with gas phase reactions in the packed bed. The pyrolysis kinetics has a critical influence on the gasification process. The propagation front has been shown to increase with air mass flux, attains a peak and then decreases with further increase in air mass flux and finally approaches negative propagation rate. This indicates that front is receding, or no upward movement() bra her it is moving downward towards the char bed. The propagation rate correlates with mass flux as (m) over dot `'(0.883) during the increasing regimes of the front movement The study clearly identifies that bed movement is an important parameter for consideration in a co-current configuration towards establishing the effective bed movement. The study also highlights the importance of surface area to volume ratio of the particles in the packed bed and its influence on the volatile generation. Finally, the gas composition for air gasification under various air mass fluxes is compared with the experimental results. (C) 2016 Elsevier B.V. All rights reserved.
Resumo:
An elastic-plastic constitutive model for transversely isotropic compressible solids (foams) has been developed. A quadratic yield surface with four parameters and one hardening function is proposed. Associated plastic flow is assumed and the yield surface evolves in a self-similar manner calibrated by the uniaxial compressive (or tensile) response of the cellular solid in the axial direction. All material constants in the model (elastic and plastic) can be determined from a combination of a total of four uniaxial and shear tests. The model is used to predict the indentation response of balsa wood to a conical indenter. For the three cone angles considered in this study, very good agreement is found between the experimental measurements and the finite element (FE) predictions of the transversely isotropic cellular solid model. On the other hand, an isotropic foam model is shown to be inadequate to capture the indentation response. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
For efficient use of conservation resources it is important to determine how species diversity changes across spatial scales. In many poorly known species groups little is known about at which spatial scales the conservation efforts should be focused. Here we examined how the community turnover of wood-inhabiting fungi is realised at three hierarchical levels, and how much of community variation is explained by variation in resource composition and spatial proximity. The hierarchical study design consisted of management type (fixed factor), forest site (random factor, nested within management type) and study plots (randomly placed plots within each study site). To examine how species richness varied across the three hierarchical scales, randomized species accumulation curves and additive partitioning of species richness were applied. To analyse variation in wood-inhabiting species and dead wood composition at each scale, linear and Permanova modelling approaches were used. Wood-inhabiting fungal communities were dominated by rare and infrequent species. The similarity of fungal communities was higher within sites and within management categories than among sites or between the two management categories, and it decreased with increasing distance among the sampling plots and with decreasing similarity of dead wood resources. However, only a small part of community variation could be explained by these factors. The species present in managed forests were in a large extent a subset of those species present in natural forests. Our results suggest that in particular the protection of rare species requires a large total area. As managed forests have only little additional value complementing the diversity of natural forests, the conservation of natural forests is the key to ecologically effective conservation. As the dissimilarity of fungal communities increases with distance, the conserved natural forest sites should be broadly distributed in space, yet the individual conserved areas should be large enough to ensure local persistence.