812 resultados para Wireless sensor node modelling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless Sensor Networks (WSN) are formed by nodes with limited computational and power resources. WSNs are finding an increasing number of applications, both civilian and military, most of which require security for the sensed data being collected by the base station from remote sensor nodes. In addition, when many sensor nodes transmit to the base station, the implosion problem arises. Providing security measures and implosion-resistance in a resource-limited environment is a real challenge. This article reviews the aggregation strategies proposed in the literature to handle the bandwidth and security problems related to many-to-one transmission in WSNs. Recent contributions to secure lossless many-to-one communication developed by the authors in the context of several Spanish-funded projects are surveyed. Ongoing work on the secure lossy many-to-one communication is also sketched.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The number of autonomous wireless sensor and control nodes has been increasing rapidly during the last decade. Until recently, these wireless nodes have been powered with batteries, which have lead to a short life cycle and high maintenance need. Due to these battery-related problems, new energy sources have been studied to power wireless nodes. One solution is energy harvesting, i.e. extracting energy from the ambient environment. Energy harvesting can provide a long-lasting power source for sensor nodes, with no need for maintenance. In this thesis, various energy harvesting technologies are studied whilst focusing on the theory of each technology and the state-of-the-art solutions of published studies and commercial solutions. In addition to energy harvesting, energy storage and energy management solutions are also studied as a subsystem of a whole energy source solution. Wireless nodes are also used in heavy-duty vehicles. Therefore a reliable, long-lasting and maintenance-free power source is also needed in this kind of environment. A forestry harvester has been used as a case study to study the feasibility of energy harvesting in a forestry harvester’s sliding boom. The energy harvester should be able to produce few milliwatts to power the target system, an independent limit switch.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless sensor networks and its applications have been widely researched and implemented in both commercial and non commercial areas. The usage of wireless sensor network has developed its market from military usage to daily use of human livings. Wireless sensor network applications from monitoring prospect are used in home monitoring, farm fields and habitant monitoring to buildings structural monitoring. As the usage boundaries of wireless sensor networks and its applications are emerging there are definite ongoing research, such as lifetime for wireless sensor network, security of sensor nodes and expanding the applications with modern day scenarios of applications as web services. The main focus in this thesis work is to study and implement monitoring application for infrastructure based sensor network and expand its usability as web service to facilitate mobile clients. The developed application is implemented for wireless sensor nodes information collection and monitoring purpose enabling home or office environment remote monitoring for a user.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to perform an experimental study to evaluate the proper operation distance between the nodes of a wireless sensor network available on the market for different agricultural crops (maize, physic nut, eucalyptus). The experimental data of the network performance offers to farmers and researchers information that might be useful to the sizing and project of the wireless sensor networks in similar situations to those studied. The evaluation showed that the separation of the nodes depends on the type of culture and it is a critical factor to ensure the feasibility of using WSN. In the configuration used, sending packets every 2 seconds, the battery life was about four days. Therefore, the autonomy may be increased with a longer interval of time between sending packets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clustering schemes improve energy efficiency of wireless sensor networks. The inclusion of mobility as a new criterion for the cluster creation and maintenance adds new challenges for these clustering schemes. Cluster formation and cluster head selection is done on a stochastic basis for most of the algorithms. In this paper we introduce a cluster formation and routing algorithm based on a mobility factor. The proposed algorithm is compared with LEACH-M protocol based on metrics viz. number of cluster head transitions, average residual energy, number of alive nodes and number of messages lost

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evolution of wireless sensor network technology has enabled us to develop advanced systems for real time monitoring. In the present scenario wireless sensor networks are increasingly being used for precision agriculture. The advantages of using wireless sensor networks in agriculture are distributed data collection and monitoring, monitor and control of climate, irrigation and nutrient supply. Hence decreasing the cost of production and increasing the efficiency of production.This paper describes the application of wireless sensor network for crop monitoring in the paddy fields of kuttand, a region of Kerala, the southern state of India.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Wireless Sensor Networks (WSN), neglecting the effects of varying channel quality can lead to an unnecessary wastage of precious battery resources and in turn can result in the rapid depletion of sensor energy and the partitioning of the network. Fairness is a critical issue when accessing a shared wireless channel and fair scheduling must be employed to provide the proper flow of information in a WSN. In this paper, we develop a channel adaptive MAC protocol with a traffic-aware dynamic power management algorithm for efficient packet scheduling and queuing in a sensor network, with time varying characteristics of the wireless channel also taken into consideration. The proposed protocol calculates a combined weight value based on the channel state and link quality. Then transmission is allowed only for those nodes with weights greater than a minimum quality threshold and nodes attempting to access the wireless medium with a low weight will be allowed to transmit only when their weight becomes high. This results in many poor quality nodes being deprived of transmission for a considerable amount of time. To avoid the buffer overflow and to achieve fairness for the poor quality nodes, we design a Load prediction algorithm. We also design a traffic aware dynamic power management scheme to minimize the energy consumption by continuously turning off the radio interface of all the unnecessary nodes that are not included in the routing path. By Simulation results, we show that our proposed protocol achieves a higher throughput and fairness besides reducing the delay

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evolution of wireless sensor network technology has enabled us to develop advanced systems for real time monitoring. In the present scenario wireless sensor networks are increasingly being used for precision agriculture. The advantages of using wireless sensor networks in agriculture are distributed data collection and monitoring, monitor and control of climate, irrigation and nutrient supply. Hence decreasing the cost of production and increasing the efficiency of production. This paper describes the development and deployment of wireless sensor network for crop monitoring in the paddy fields of Kuttanad, a region of Kerala, the southern state of India.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evolution of wireless sensor network technology has enabled us to develop advanced systems for real time monitoring. In the present scenario wireless sensor networks are increasingly being used for precision agriculture. The advantages of using wireless sensor networks in agriculture are distributed data collection and monitoring, monitor and control of climate, irrigation and nutrient supply. Hence decreasing the cost of production and increasing the efficiency of production. This paper describes the security issues related to wireless sensor networks and suggests some techniques for achieving system security. This paper also discusses a protocol that can be adopted for increasing the security of the transmitted data

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article presents a prototype model based on a wireless sensor actuator network (WSAN) aimed at optimizing both energy consumption of environmental systems and well-being of occupants in buildings. The model is a system consisting of the following components: a wireless sensor network, `sense diaries', environmental systems such as heating, ventilation and air-conditioning systems, and a central computer. A multi-agent system (MAS) is used to derive and act on the preferences of the occupants. Each occupant is represented by a personal agent in the MAS. The sense diary is a new device designed to elicit feedback from occupants about their satisfaction with the environment. The roles of the components are: the WSAN collects data about physical parameters such as temperature and humidity from an indoor environment; the central computer processes the collected data; the sense diaries leverage trade-offs between energy consumption and well-being, in conjunction with the agent system; and the environmental systems control the indoor environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper provides an introduction to Wireless Sensor Networks (WSN), their applications in the field of control engineering and elsewhere and gives pointers to future research needs. WSN are collections of stand-alone devices which, typically, have one or more sensors (e.g. temperature, light level), some limited processing capability and a wireless interface allowing communication with a base station. As they are usually battery powered, the biggest challenge is to achieve the necessary monitoring whilst using the least amount of power.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless sensor networks (WSNs) have been widely used in pervasive systems such as intelligent buildings. As a vital factor of product cost, energy consuming in WSN has been focused upon, but only via energy harvesting can the problem be overcome radically. This article presents a new approach to harvesting electromagnetic energy for WSN from useless radio frequency (RF) signals transmitted in WSN, with a quantitative analysis showing its feasibility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a vital factor affecting system cost and lifetime, energy consumption in wireless sensor networks (WSNs) has been paid much attention to. This article presents a new approach to making use of electromagnetic energy from useless radio frequency (RF) signals transmitted in WSNs, with a quantitative analysis showing its feasibility. A mechanism to harvest the energy either passively or actively is proposed.