987 resultados para Wireless Terminal Antennas
Resumo:
Various nondestructive testing (NDT) technologies for construction and performance monitoring have been studied for decades. Recently, the rapid evolution of wireless sensor network (WSN) technologies has enabled the development of sensors that can be embedded in concrete to monitor the structural health of infrastructure. Such sensors can be buried inside concrete and they can collect and report valuable volumetric data related to the health of a structure during and/or after construction. Wireless embedded sensors monitoring system is also a promising solution for decreasing the high installation and maintenance cost of the conventional wire based monitoring systems. Wireless monitoring sensors need to operate for long time. However, sensor batteries have finite life-time. Therefore, in order to enable long operational life of wireless sensors, novel wireless powering methods, which can charge the sensors’ rechargeable batteries wirelessly, need to be developed. The optimization of RF wireless powering of sensors embedded in concrete is studied here. First, our analytical results focus on calculating the transmission loss and propagation loss of electromagnetic waves penetrating into plain concrete at different humidity conditions for various frequencies. This analysis specifically leads to the identification of an optimum frequency range within 20–80 MHz that is validated through full-wave electromagnetic simulations. Second, the effects of various reinforced bar configurations on the efficiency of wireless powering are investigated. Specifically, effects of the following factors are studied: rebar types, rebar period, rebar radius, depth inside concrete, and offset placement. This analysis leads to the identification of the 902–928 MHz ISM band as the optimum power transmission frequency range for sensors embedded in reinforced concrete, since antennas working in this band are less sensitive to the effects of varying humidity as well as rebar configurations. Finally, optimized rectennas are designed for receiving and/or harvesting power in order to charge the rechargeable batteries of the embedded sensors. Such optimized wireless powering systems exhibit significantly larger efficiencies than the efficiencies of conventional RF wireless powering systems for sensors embedded in plain or reinforced concrete.
Resumo:
With the increase in traffic on the internet, there is a greater demand for wireless mobile and ubiquitous applications. These applications need antennas that are not only broadband, but can also work in different frequency spectrums. Even though there is a greater demand for such applications, it is still imperative to conserve power. Thus, there is a need to design multi-broadband antennas that do not use a lot of power. Reconfigurable antennas can work in different frequency spectrums as well as conserve power. The current designs of reconfigurable antennas work only in one band. There is a need to design reconfigurable antennas that work in different frequency spectrums. In this current era of high power consumption there is also a greater demand for wireless powering. This dissertation explores ideal designs of reconfigurable antennas that can improve performance and enable wireless powering. This dissertation also presents lab results of the multi-broadband reconfigurable antenna that was created. A detailed mathematical analyses, as well as extensive simulation results are also presented. The novel reconfigurable antenna designs can be extended to Multiple Input Multiple Output (MIMO) environments and military applications.
Resumo:
Wireless Sensor Networks (WSNs) are currently having a revolutionary impact in rapidly emerging wearable applications such as health and fitness monitoring amongst many others. These types of Body Sensor Network (BSN) applications require highly integrated wireless sensor devices for use in a wearable configuration, to monitor various physiological parameters of the user. These new requirements are currently posing significant design challenges from an antenna perspective. This work addresses several design challenges relating to antenna design for these types of applications. In this thesis, a review of current antenna solutions for WSN applications is first presented, investigating both commercial and academic solutions. Key design challenges are then identified relating to antenna size and performance. A detailed investigation of the effects of the human body on antenna impedance characteristics is then presented. A first-generation antenna tuning system is then developed. This system enables the antenna impedance to be tuned adaptively in the presence of the human body. Three new antenna designs are also presented. A compact, low-cost 433 MHz antenna design is first reported and the effects of the human body on the impedance of the antenna are investigated. A tunable version of this antenna is then developed, using a higher performance, second-generation tuner that is integrated within the antenna element itself, enabling autonomous tuning in the presence of the human body. Finally, a compact sized, dual-band antenna is reported that covers both the 433 MHz and 2.45 GHz bands to provide improved quality of service (QoS) in WSN applications. To date, state-of-the-art WSN devices are relatively simple in design with limited antenna options available, especially for the lower UHF bands. In addition, current devices have no capability to deal with changing antenna environments such as in wearable BSN applications. This thesis presents several contributions that advance the state-of-the-art in this area, relating to the design of miniaturized WSN antennas and the development of antenna tuning solutions for BSN applications.
Resumo:
We investigate the secrecy performance of dualhop amplify-and-forward (AF) multi-antenna relaying systems over Rayleigh fading channels, by taking into account the direct link between the source and destination. In order to exploit the available direct link and the multiple antennas for secrecy improvement, different linear processing schemes at the relay and different diversity combining techniques at the destination are proposed, namely, 1) Zero-forcing/Maximal ratio combining (ZF/MRC), 2) ZF/Selection combining (ZF/SC), 3) Maximal ratio transmission/MRC (MRT/MRC) and 4) MRT/Selection combining (MRT/SC). For all these schemes, we present new closed-form approximations for the secrecy outage probability. Moreover, we investigate a benchmark scheme, i.e., cooperative jamming/ZF (CJ/ZF), where the secrecy outage probability is obtained in exact closed-form. In addition, we present asymptotic secrecy outage expressions for all the proposed schemes in the high signal-to-noise ratio (SNR) regime, in order to characterize key design parameters, such as secrecy diversity order and secrecy array gain. The outcomes of this paper can be summarized as follows: a) MRT/MRC and MRT/SC achieve a full diversity order of M + 1, ZF/MRC and ZF/SC achieve a diversity order of M, while CJ/ZF only achieves unit diversity order, where M is the number of antennas at the relay. b) ZF/MRC (ZF/SC) outperforms the corresponding MRT/MRC (MRT/SC) in the low SNR regime, while becomes inferior to the corresponding MRT/MRC (MRT/SC) in the high SNR. c) All of the proposed schemes tend to outperform the CJ/ZF with moderate number of antennas, and linear processing schemes with MRC attain better performance than those with SC.
Physical Layer Security with Threshold-Based Multiuser Scheduling in Multi-antenna Wireless Networks
Resumo:
In this paper, we consider a multiuser downlink wiretap network consisting of one base station (BS) equipped with AA antennas, NB single-antenna legitimate users, and NE single-antenna eavesdroppers over Nakagami-m fading channels. In particular, we introduce a joint secure transmission scheme that adopts transmit antenna selection (TAS) at the BS and explores threshold-based selection diversity (tSD) scheduling over legitimate users to achieve a good secrecy performance while maintaining low implementation complexity. More specifically, in an effort to quantify the secrecy performance of the considered system, two practical scenarios are investigated, i.e., Scenario I: the eavesdropper’s channel state information (CSI) is unavailable at the BS, and Scenario II: the eavesdropper’s CSI is available at the BS. For Scenario I, novel exact closed-form expressions of the secrecy outage probability are derived, which are valid for general networks with an arbitrary number of legitimate users, antenna configurations, number of eavesdroppers, and the switched threshold. For Scenario II, we take into account the ergodic secrecy rate as the principle performance metric, and derive novel closed-form expressions of the exact ergodic secrecy rate. Additionally, we also provide simple and asymptotic expressions for secrecy outage probability and ergodic secrecy rate under two distinct cases, i.e., Case I: the legitimate user is located close to the BS, and Case II: both the legitimate user and eavesdropper are located close to the BS. Our important findings reveal that the secrecy diversity order is AAmA and the slope of secrecy rate is one under Case I, while the secrecy diversity order and the slope of secrecy rate collapse to zero under Case II, where the secrecy performance floor occurs. Finally, when the switched threshold is carefully selected, the considered scheduling scheme outperforms other well known existing schemes in terms of the secrecy performance and complexity tradeoff
Resumo:
In this paper, we show how the polarisation state of a linearly polarised antenna can be recovered through the use of a three-term error correction model. The approach adopted is shown to be robust in situations where some multipath exists and where the sampling channels are imperfect with regard to both their amplitude and phase tracking. In particular, it has been shown that error of the measured polarisation tilt angle can be improved from 33% to 3% and below by applying the proposed calibration method. It is described how one can use a rotating dipole antenna as both the calibration standard and as the polarisation encoder, thus simplifying the physical arrangement of the transmitter. Experimental results are provided in order to show the utility of the approach, which could have a variety of applications including bandwidth conservative polarisation sub-modulation in advanced wireless communications systems.
Resumo:
With the proliferation of new mobile devices and applications, the demand for ubiquitous wireless services has increased dramatically in recent years. The explosive growth in the wireless traffic requires the wireless networks to be scalable so that they can be efficiently extended to meet the wireless communication demands. In a wireless network, the interference power typically grows with the number of devices without necessary coordination among them. On the other hand, large scale coordination is always difficult due to the low-bandwidth and high-latency interfaces between access points (APs) in traditional wireless networks. To address this challenge, cloud radio access network (C-RAN) has been proposed, where a pool of base band units (BBUs) are connected to the distributed remote radio heads (RRHs) via high bandwidth and low latency links (i.e., the front-haul) and are responsible for all the baseband processing. But the insufficient front-haul link capacity may limit the scale of C-RAN and prevent it from fully utilizing the benefits made possible by the centralized baseband processing. As a result, the front-haul link capacity becomes a bottleneck in the scalability of C-RAN. In this dissertation, we explore the scalable C-RAN in the effort of tackling this challenge. In the first aspect of this dissertation, we investigate the scalability issues in the existing wireless networks and propose a novel time-reversal (TR) based scalable wireless network in which the interference power is naturally mitigated by the focusing effects of TR communications without coordination among APs or terminal devices (TDs). Due to this nice feature, it is shown that the system can be easily extended to serve more TDs. Motivated by the nice properties of TR communications in providing scalable wireless networking solutions, in the second aspect of this dissertation, we apply the TR based communications to the C-RAN and discover the TR tunneling effects which alleviate the traffic load in the front-haul links caused by the increment of TDs. We further design waveforming schemes to optimize the downlink and uplink transmissions in the TR based C-RAN, which are shown to improve the downlink and uplink transmission accuracies. Consequently, the traffic load in the front-haul links is further alleviated by the reducing re-transmissions caused by transmission errors. Moreover, inspired by the TR-based C-RAN, we propose the compressive quantization scheme which applies to the uplink of multi-antenna C-RAN so that more antennas can be utilized with the limited front-haul capacity, which provide rich spatial diversity such that the massive TDs can be served more efficiently.
Resumo:
The proliferation of new mobile communication devices, such as smartphones and tablets, has led to an exponential growth in network traffic. The demand for supporting the fast-growing consumer data rates urges the wireless service providers and researchers to seek a new efficient radio access technology, which is the so-called 5G technology, beyond what current 4G LTE can provide. On the other hand, ubiquitous RFID tags, sensors, actuators, mobile phones and etc. cut across many areas of modern-day living, which offers the ability to measure, infer and understand the environmental indicators. The proliferation of these devices creates the term of the Internet of Things (IoT). For the researchers and engineers in the field of wireless communication, the exploration of new effective techniques to support 5G communication and the IoT becomes an urgent task, which not only leads to fruitful research but also enhance the quality of our everyday life. Massive MIMO, which has shown the great potential in improving the achievable rate with a very large number of antennas, has become a popular candidate. However, the requirement of deploying a large number of antennas at the base station may not be feasible in indoor scenarios. Does there exist a good alternative that can achieve similar system performance to massive MIMO for indoor environment? In this dissertation, we address this question by proposing the time-reversal technique as a counterpart of massive MIMO in indoor scenario with the massive multipath effect. It is well known that radio signals will experience many multipaths due to the reflection from various scatters, especially in indoor environments. The traditional TR waveform is able to create a focusing effect at the intended receiver with very low transmitter complexity in a severe multipath channel. TR's focusing effect is in essence a spatial-temporal resonance effect that brings all the multipaths to arrive at a particular location at a specific moment. We show that by using time-reversal signal processing, with a sufficiently large bandwidth, one can harvest the massive multipaths naturally existing in a rich-scattering environment to form a large number of virtual antennas and achieve the desired massive multipath effect with a single antenna. Further, we explore the optimal bandwidth for TR system to achieve maximal spectral efficiency. Through evaluating the spectral efficiency, the optimal bandwidth for TR system is found determined by the system parameters, e.g., the number of users and backoff factor, instead of the waveform types. Moreover, we investigate the tradeoff between complexity and performance through establishing a generalized relationship between the system performance and waveform quantization in a practical communication system. It is shown that a 4-bit quantized waveforms can be used to achieve the similar bit-error-rate compared to the TR system with perfect precision waveforms. Besides 5G technology, Internet of Things (IoT) is another terminology that recently attracts more and more attention from both academia and industry. In the second part of this dissertation, the heterogeneity issue within the IoT is explored. One of the significant heterogeneity considering the massive amount of devices in the IoT is the device heterogeneity, i.e., the heterogeneous bandwidths and associated radio-frequency (RF) components. The traditional middleware techniques result in the fragmentation of the whole network, hampering the objects interoperability and slowing down the development of a unified reference model for the IoT. We propose a novel TR-based heterogeneous system, which can address the bandwidth heterogeneity and maintain the benefit of TR at the same time. The increase of complexity in the proposed system lies in the digital processing at the access point (AP), instead of at the devices' ends, which can be easily handled with more powerful digital signal processor (DSP). Meanwhile, the complexity of the terminal devices stays low and therefore satisfies the low-complexity and scalability requirement of the IoT. Since there is no middleware in the proposed scheme and the additional physical layer complexity concentrates on the AP side, the proposed heterogeneous TR system better satisfies the low-complexity and energy-efficiency requirement for the terminal devices (TDs) compared with the middleware approach.
Resumo:
Wireless power transfer (WPT) and radio frequency (RF)-based energy har- vesting arouses a new wireless network paradigm termed as wireless powered com- munication network (WPCN), where some energy-constrained nodes are enabled to harvest energy from the RF signals transferred by other energy-sufficient nodes to support the communication operations in the network, which brings a promising approach for future energy-constrained wireless network design. In this paper, we focus on the optimal WPCN design. We consider a net- work composed of two communication groups, where the first group has sufficient power supply but no available bandwidth, and the second group has licensed band- width but very limited power to perform required information transmission. For such a system, we introduce the power and bandwidth cooperation between the two groups so that both group can accomplish their expected information delivering tasks. Multiple antennas are employed at the hybrid access point (H-AP) to en- hance both energy and information transfer efficiency and the cooperative relaying is employed to help the power-limited group to enhance its information transmission throughput. Compared with existing works, cooperative relaying, time assignment, power allocation, and energy beamforming are jointly designed in a single system. Firstly, we propose a cooperative transmission protocol for the considered system, where group 1 transmits some power to group 2 to help group 2 with information transmission and then group 2 gives some bandwidth to group 1 in return. Sec- ondly, to explore the information transmission performance limit of the system, we formulate two optimization problems to maximize the system weighted sum rate by jointly optimizing the time assignment, power allocation, and energy beamforming under two different power constraints, i.e., the fixed power constraint and the aver- age power constraint, respectively. In order to make the cooperation between the two groups meaningful and guarantee the quality of service (QoS) requirements of both groups, the minimal required data rates of the two groups are considered as constraints for the optimal system design. As both problems are non-convex and have no known solutions, we solve it by using proper variable substitutions and the semi-definite relaxation (SDR). We theoretically prove that our proposed solution method can guarantee to find the global optimal solution. Thirdly, consider that the WPCN has promising application potentials in future energy-constrained net- works, e.g., wireless sensor network (WSN), wireless body area network (WBAN) and Internet of Things (IoT), where the power consumption is very critical. We investigate the minimal power consumption optimal design for the considered co- operation WPCN. For this, we formulate an optimization problem to minimize the total consumed power by jointly optimizing the time assignment, power allocation, and energy beamforming under required data rate constraints. As the problem is also non-convex and has no known solutions, we solve it by using some variable substitutions and the SDR method. We also theoretically prove that our proposed solution method for the minimal power consumption design guarantees the global optimal solution. Extensive experimental results are provided to discuss the system performance behaviors, which provide some useful insights for future WPCN design. It shows that the average power constrained system achieves higher weighted sum rate than the fixed power constrained system. Besides, it also shows that in such a WPCN, relay should be placed closer to the multi-antenna H-AP to achieve higher weighted sum rate and consume lower total power.
Resumo:
This research investigates the implementation of battery-less RFID sensing platforms inside lossy media, such as, concrete and grout. Both concrete and novel grouts can be used for nuclear plant decommissioning as part of the U.S. Department of Energy’s (DOE’s) cleanup projects. Our research examines the following: (1) material characterization, (2) analytical modeling of transmission and propagation losses inside lossy media, (3) maximum operational range of RFID wireless sensors embedded inside concrete and grout, and (4) best positioning of antennas for achieving longer communication range between RFID antennas and wireless sensors. Our research uses the battery-less Wireless Identification and Sensing Platform (WISP) which can be used to monitor temperature, and humidity inside complex materials. By using a commercial Agilent open-ended coaxial probe (HP8570B), the measurements of the dielectric permittivity of concrete and grout are performed. Subsequently, the measured complex permittivity is used to formulate analytical Debye models. Also, the transmission and propagation losses of a uniform plane wave inside grout are calculated. Our results show that wireless sensors will perform better in concrete than grout. In addition, the maximum axial and radial ranges for WISP are experimentally determined. Our work illustrates the feasibility of battery-less wireless sensors that are embedded inside concrete and grout. Also, our work provides information that can be used to optimize the power management, sampling rate, and antenna design of such sensors.
Resumo:
This paper presents the study and experimental tests for the viability analysis of using multiple wireless technologies in urban traffic light controllers in a Smart City environment. Communication drivers, different types of antennas, data acquisition methods and data processing for monitoring the network are presented. The sensors and actuators modules are connected in a local area network through two distinct low power wireless networks using both 868 MHz and 2.4 GHz frequency bands. All data communications using 868 MHz go through a Moteino. Various tests are made to assess the most advantageous features of each communication type. The experimental results show better range for 868 MHz solutions, whereas the 2.4 GHz presents the advantage of self-regenerating the network and mesh. The different pros and cons of both communication methods are presented.