873 resultados para Wide area networks (Computer networks)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes the deployment of a neural network computing environment on Active Networks. Active Networks are packet-switched computer networks in which packets can contain code fragments that are executed on the intermediate nodes. This feature allows the injection of small pieces of codes to deal with computer network problems directly into the network core, and the adoption of new computing techniques to solve networking problems. The goal of our project is the adoption of a distributed neural network for approaching tasks which are specific of the computer network environment. Dynamically reconfigurable neural networks are spread on an experimental wide area backbone of active nodes (ABone) to show the feasibility of the proposed approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A transparent (wide-area) wavelength-routed optical network may be constructed by using wavelength cross-connect switches connected together by fiber to form an arbitrary mesh structure. The network is accessed through electronic stations that are attached to some of these cross-connects. These wavelength cross-connect switches have the property that they may configure themselves into unspecified states. Each input port of a switch is always connected to some output port of the switch whether or not such a connection is required for the purpose of information transfer. Due to the presence of these unspecified states, there exists the possibility of setting up unintended alloptical cycles in the network (viz., a loop with no terminating electronics in it). If such a cycle contains amplifiers [e.g., Erbium- Doped Fiber Amplifiers (EDFA’s)], there exists the possibility that the net loop gain is greater than the net loop loss. The amplified spontaneous emission (ASE) noise from amplifiers can build up in such a feedback loop to saturate the amplifiers and result in oscillations of the ASE noise in the loop. Such all-optical cycles as defined above (and hereafter referred to as “white” cycles) must be eliminated from an optical network in order for the network to perform any useful operation. Furthermore, for the realistic case in which the wavelength cross-connects result in signal crosstalk, there is a possibility of having closed cycles with oscillating crosstalk signals. We examine algorithms that set up new transparent optical connections upon request while avoiding the creation of such cycles in the network. These algorithms attempt to find a route for a connection and then (in a post-processing fashion) configure switches such that white cycles that might get created would automatically get eliminated. In addition, our call-set-up algorithms can avoid the possibility of crosstalk cycles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, there has been growing interest in developing optical fiber networks to support the increasing bandwidth demands of multimedia applications, such as video conferencing and World Wide Web browsing. One technique for accessing the huge bandwidth available in an optical fiber is wavelength-division multiplexing (WDM). Under WDM, the optical fiber bandwidth is divided into a number of nonoverlapping wavelength bands, each of which may be accessed at peak electronic rates by an end user. By utilizing WDM in optical networks, we can achieve link capacities on the order of 50 THz. The success of WDM networks depends heavily on the available optical device technology. This paper is intended as a tutorial on some of the optical device issues in WDM networks. It discusses the basic principles of optical transmission in fiber and reviews the current state of the art in optical device technology. It introduces some of the basic components in WDM networks, discusses various implementations of these components, and provides insights into their capabilities and limitations. Then, this paper demonstrates how various optical components can be incorporated into WDM optical networks for both local and wide-area applications. Last, the paper provides a brief review of experimental WDM networks that have been implemented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computer and telecommunication networks are changing the world dramatically and will continue to do so in the foreseeable future. The Internet, primarily based on packet switches, provides very flexible data services such as e-mail and access to the World Wide Web. The Internet is a variable-delay, variable- bandwidth network that provides no guarantee on quality of service (QoS) in its initial phase. New services are being added to the pure data delivery framework of yesterday. Such high demands on capacity could lead to a “bandwidth crunch” at the core wide-area network, resulting in degradation of service quality. Fortunately, technological innovations have emerged which can provide relief to the end user to overcome the Internet’s well-known delay and bandwidth limitations. At the physical layer, a major overhaul of existing networks has been envisaged from electronic media (e.g., twisted pair and cable) to optical fibers - in wide-area, metropolitan-area, and even local-area settings. In order to exploit the immense bandwidth potential of optical fiber, interesting multiplexing techniques have been developed over the years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bandwidth requirements of the Internet are increasing every day and there are newer and more bandwidth-thirsty applications emerging on the horizon. Wavelength division multiplexing (WDM) is the next step towards leveraging the capabilities of the optical fiber, especially for wide-area backbone networks. The ability to switch a signal at intermediate nodes in a WDM network based on their wavelengths is known as wavelength-routing. One of the greatest advantages of using wavelength-routing WDM is the ability to create a virtual topology different from the physical topology of the underlying network. This virtual topology can be reconfigured when necessary, to improve performance. We discuss the previous work done on virtual topology design and also discuss and propose different reconfiguration algorithms applicable under different scenarios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Healthcare, Human Computer Interfaces (HCI), Security and Biometry are the most promising application scenario directly involved in the Body Area Networks (BANs) evolution. Both wearable devices and sensors directly integrated in garments envision a word in which each of us is supervised by an invisible assistant monitoring our health and daily-life activities. New opportunities are enabled because improvements in sensors miniaturization and transmission efficiency of the wireless protocols, that achieved the integration of high computational power aboard independent, energy-autonomous, small form factor devices. Application’s purposes are various: (I) data collection to achieve off-line knowledge discovery; (II) user notification of his/her activities or in case a danger occurs; (III) biofeedback rehabilitation; (IV) remote alarm activation in case the subject need assistance; (V) introduction of a more natural interaction with the surrounding computerized environment; (VI) users identification by physiological or behavioral characteristics. Telemedicine and mHealth [1] are two of the leading concepts directly related to healthcare. The capability to borne unobtrusiveness objects supports users’ autonomy. A new sense of freedom is shown to the user, not only supported by a psychological help but a real safety improvement. Furthermore, medical community aims the introduction of new devices to innovate patient treatments. In particular, the extension of the ambulatory analysis in the real life scenario by proving continuous acquisition. The wide diffusion of emerging wellness portable equipment extended the usability of wearable devices also for fitness and training by monitoring user performance on the working task. The learning of the right execution techniques related to work, sport, music can be supported by an electronic trainer furnishing the adequate aid. HCIs made real the concept of Ubiquitous, Pervasive Computing and Calm Technology introduced in the 1988 by Marc Weiser and John Seeley Brown. They promotes the creation of pervasive environments, enhancing the human experience. Context aware, adaptive and proactive environments serve and help people by becoming sensitive and reactive to their presence, since electronics is ubiquitous and deployed everywhere. In this thesis we pay attention to the integration of all the aspects involved in a BAN development. Starting from the choice of sensors we design the node, configure the radio network, implement real-time data analysis and provide a feedback to the user. We present algorithms to be implemented in wearable assistant for posture and gait analysis and to provide assistance on different walking conditions, preventing falls. Our aim, expressed by the idea to contribute at the development of a non proprietary solutions, driven us to integrate commercial and standard solutions in our devices. We use sensors available on the market and avoided to design specialized sensors in ASIC technologies. We employ standard radio protocol and open source projects when it was achieved. The specific contributions of the PhD research activities are presented and discussed in the following. • We have designed and build several wireless sensor node providing both sensing and actuator capability making the focus on the flexibility, small form factor and low power consumption. The key idea was to develop a simple and general purpose architecture for rapid analysis, prototyping and deployment of BAN solutions. Two different sensing units are integrated: kinematic (3D accelerometer and 3D gyroscopes) and kinetic (foot-floor contact pressure forces). Two kind of feedbacks were implemented: audio and vibrotactile. • Since the system built is a suitable platform for testing and measuring the features and the constraints of a sensor network (radio communication, network protocols, power consumption and autonomy), we made a comparison between Bluetooth and ZigBee performance in terms of throughput and energy efficiency. Test in the field evaluate the usability in the fall detection scenario. • To prove the flexibility of the architecture designed, we have implemented a wearable system for human posture rehabilitation. The application was developed in conjunction with biomedical engineers who provided the audio-algorithms to furnish a biofeedback to the user about his/her stability. • We explored off-line gait analysis of collected data, developing an algorithm to detect foot inclination in the sagittal plane, during walk. • In collaboration with the Wearable Lab – ETH, Zurich, we developed an algorithm to monitor the user during several walking condition where the user carry a load. The remainder of the thesis is organized as follows. Chapter I gives an overview about Body Area Networks (BANs), illustrating the relevant features of this technology and the key challenges still open. It concludes with a short list of the real solutions and prototypes proposed by academic research and manufacturers. The domain of the posture and gait analysis, the methodologies, and the technologies used to provide real-time feedback on detected events, are illustrated in Chapter II. The Chapter III and IV, respectively, shown BANs developed with the purpose to detect fall and monitor the gait taking advantage by two inertial measurement unit and baropodometric insoles. Chapter V reports an audio-biofeedback system to improve balance on the information provided by the use centre of mass. A walking assistant based on the KNN classifier to detect walking alteration on load carriage, is described in Chapter VI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless network technologies, such as IEEE 802.11 based wireless local area networks (WLANs), have been adopted in wireless networked control systems (WNCS) for real-time applications. Distributed real-time control requires satisfaction of (soft) real-time performance from the underlying networks for delivery of real-time traffic. However, IEEE 802.11 networks are not designed for WNCS applications. They neither inherently provide quality-of-service (QoS) support, nor explicitly consider the characteristics of the real-time traffic on networked control systems (NCS), i.e., periodic round-trip traffic. Therefore, the adoption of 802.11 networks in real-time WNCSs causes challenging problems for network design and performance analysis. Theoretical methodologies are yet to be developed for computing the best achievable WNCS network performance under the constraints of real-time control requirements. Focusing on IEEE 802.11 distributed coordination function (DCF) based WNCSs, this paper analyses several important NCS network performance indices, such as throughput capacity, round trip time and packet loss ratio under the periodic round trip traffic pattern, a unique feature of typical NCSs. Considering periodic round trip traffic, an analytical model based on Markov chain theory is developed for deriving these performance indices under a critical real-time traffic condition, at which the real-time performance constraints are marginally satisfied. Case studies are also carried out to validate the theoretical development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Critical road infrastructure (such as tunnels and overpasses) is of major significance to society and constitutes major components of interdependent, ‘systems and networks’. Failure in critical components of these wide area infrastructure systems can often result in cascading disturbances with secondary and tertiary impacts - some of which may become initiating sources of failure in their own right, triggering further systems failures across wider networks. Perrow1) considered the impact of our increasing use of technology in high-risk fields, analysing the implications on everyday life and argued that designers of these types of infrastructure systems cannot predict every possible failure scenario nor create perfect contingency plans for operators. Challenges exist for transport system operators in the conceptualisation and implementation of response and subsequent recovery planning for significant events. Disturbances can vary from reduced traffic flow causing traffic congestion throughout the local road network(s) and subsequent possible loss of income to businesses and industry to a major incident causing loss of life or complete loss of an asset. Many organisations and institutions, despite increasing recognition of the effects of crisis events, are not adequately prepared to manage crises2). It is argued that operators of land transport infrastructure are in a similar category of readiness given the recent instances of failures in road tunnels. These unexpected infrastructure failures, and their ultimately identified causes, suggest there is significant room for improvement. As a result, risk profiles for road transport systems are often complex due to the human behaviours and the inter-mix of technical and organisational components and the managerial coverage needed for the socio-technical components and the physical infrastructure. In this sense, the span of managerial oversight may require new approaches to asset management that combines the notion of risk and continuity management. This paper examines challenges in the planning of response and recovery practices of owner/operators of transport systems (above and below ground) in Australia covering: • Ageing or established infrastructure; and • New-build infrastructure. With reference to relevant international contexts this paper seeks to suggest options for enhancing the planning and practice for crisis response in these transport networks and as a result support the resilience of Critical Infrastructure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The key problem tackled in this paper is the development of a stand-alone self-powered sensor to directly sense the spectrum of mechanical vibrations. Such a sensor could be deployed in wide area sensor networks to monitor structural vibrations of large machines (e. g. aircrafts) and initiate corrective action if the structure approaches resonance. In this paper, we study the feasibility of using stretched membranes of polymer piezoelectric polyvinlidene fluoride for low-frequency vibration spectrum sensing. We design and evaluate a low-frequency vibration spectrum sensor that accepts an incoming vibration and directly provides the spectrum of the vibration as the output.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of a new pointer-based medium-access control protocol that was designed to significantly improve the energy efficiency of user terminals in quality-of-service-enabled wireless local area networks was analysed. The new protocol, pointer-controlled slot allocation and resynchronisation protocol (PCSARe), is based on the hybrid coordination function-controlled channel access mode of the IEEE 802.11e standard. PCSARe reduces energy consumption by removing the need for power-saving stations to remain awake for channel listening. Discrete event network simulations were performed to compare the performance of PCSARe with the non-automatic power save delivery (APSD) and scheduled-APSD power-saving modes of IEEE 802.11e. The simulation results show a demonstrable improvement in energy efficiency without significant reduction in performance when using PCSARe. For a wireless network consisting of an access point and eight stations in power-saving mode, the energy saving was up to 39% when using PCSARe instead of IEEE 802.11e non-APSD. The results also show that PCSARe offers significantly reduced uplink access delay over IEEE 802.11e non-APSD, while modestly improving the uplink throughput. Furthermore, although both had the same energy consumption, PCSARe gave a 25% reduction in downlink access delay compared with IEEE 802.11e S-APSD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we discuss and evaluate two proposed metro wavelength division multiplexing (WDM) ring network architectures for variable-length packet traffic in storage area networks (SANs) settings. The paper begins with a brief review of the relevant architectures and protocols in the literature. Subsequently, the network architectures along with their medium access control (MAC) protocols are described. Performance of the two network architectures is studied by means of computer simulation in terms of their queuing delay, node throughput and proportion of packets dropped. The network performance is evaluated under symmetric and asymmetric traffic scenarios with Poisson and self-similar traffic. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Smart Grids are characterized by the application of information communication technology (ICT) to solve electrical energy challenges. Electric power networks span large geographical areas, thus a necessary component of many Smart Grid applications is a wide area network (WAN). For the Smart Grid to be successful, utilities must be confident that the communications infrastructure is secure. This paper describes how a WAN can be deployed using WiMAX radio technology to provide high bandwidth communications to areas not commonly served by utility communications, such as generators embedded in the distribution network. A planning exercise is described, using Northern Ireland as a case study. The suitability of the technology for real-time applications is assessed using experimentally obtained latency data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To interconnect a wireless sensor network (WSN) to the Internet, we propose to use TCP/IP as the standard protocol for all network entities. We present a cross layer designed communication architecture, which contains a MAC protocol, IP, a new protocol called Hop-to-Hop Reliability (H2HR) protocol, and the TCP Support for Sensor Nodes (TSS) protocol. The MAC protocol implements the MAC layer of beacon-less personal area networks (PANs) as defined in IEEE 802.15.4. H2HR implements hop-to-hop reliability mechanisms. Two acknowledgment mechanisms, explicit and implicit ACK are supported. TSS optimizes using TCP in WSNs by implementing local retransmission of TCP data packets, local TCP ACK regeneration, aggressive TCP ACK recovery, congestion and flow control algorithms. We show that H2HR increases the performance of UDP, TCP, and RMST in WSNs significantly. The throughput is increased and the packet loss ratio is decreased. As a result, WSNs can be operated and managed using TCP/IP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many context-aware applications rely on the knowledge of the position of the user and the surrounding objects to provide advanced, personalized and real-time services. In wide-area deployments, a routing protocol is needed to collect the location information from distant nodes. In this paper, we propose a new source-initiated (on demand) routing protocol for location-aware applications in IEEE 802.15.4 wireless sensor networks. This protocol uses a low power MAC layer to maximize the lifetime of the network while maintaining the communication delay to a low value. Its performance is assessed through experimental tests that show a good trade-off between power consumption and time delay in the localization of a mobile device.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the fact that a metro network market is very cost sensitive, direct modulated schemes appear attractive. In this paper a CWDM (Coarse Wavelength Division Multiplexing) system is studied in detail by means of an Optical Communication System Design Software; a detailed study of the modulated current shape (exponential, sine and gaussian) for 2.5 Gb/s CWDM Metropolitan Area Networks is performed to evaluate its tolerance to linear impairments such as signal-to-noise-ratio degradation and dispersion. Point-to-point links are investigated and optimum design parameters are obtained. Through extensive sets of simulation results, it is shown that some of these shape pulses are more tolerant to dispersion when compared with conventional gaussian shape pulses. In order to achieve a low Bit Error Rate (BER), different types of optical transmitters are considered including strongly adiabatic and transient chirp dominated Directly Modulated Lasers (DMLs). We have used fibers with different dispersion characteristics, showing that the system performance depends, strongly, on the chosen DML?fiber couple.