952 resultados para White noise
Resumo:
Sudden changes in the stiffness of a structure are often indicators of structural damage. Detection of such sudden stiffness change from the vibrations of structures is important for Structural Health Monitoring (SHM) and damage detection. Non-contact measurement of these vibrations is a quick and efficient way for successful detection of sudden stiffness change of a structure. In this paper, we demonstrate the capability of Laser Doppler Vibrometry to detect sudden stiffness change in a Single Degree Of Freedom (SDOF) oscillator within a laboratory environment. The dynamic response of the SDOF system was measured using a Polytec RSV-150 Remote Sensing Vibrometer. This instrument employs Laser Doppler Vibrometry for measuring dynamic response. Additionally, the vibration response of the SDOF system was measured through a MicroStrain G-Link Wireless Accelerometer mounted on the SDOF system. The stiffness of the SDOF system was experimentally determined through calibrated linear springs. The sudden change of stiffness was simulated by introducing the failure of a spring at a certain instant in time during a given period of forced vibration. The forced vibration on the SDOF system was in the form of a white noise input. The sudden change in stiffness was successfully detected through the measurements using Laser Doppler Vibrometry. This detection from optically obtained data was compared with a detection using data obtained from the wireless accelerometer. The potential of this technique is deemed important for a wide range of applications. The method is observed to be particularly suitable for rapid damage detection and health monitoring of structures under a model-free condition or where information related to the structure is not sufficient.
Resumo:
La vallée du fleuve Saint-Laurent, dans l’est du Canada, est l’une des régions sismiques les plus actives dans l’est de l’Amérique du Nord et est caractérisée par de nombreux tremblements de terre intraplaques. Après la rotation rigide de la plaque tectonique, l’ajustement isostatique glaciaire est de loin la plus grande source de signal géophysique dans l’est du Canada. Les déformations et les vitesses de déformation de la croûte terrestre de cette région ont été étudiées en utilisant plus de 14 ans d’observations (9 ans en moyenne) de 112 stations GPS fonctionnant en continu. Le champ de vitesse a été obtenu à partir de séries temporelles de coordonnées GPS quotidiennes nettoyées en appliquant un modèle combiné utilisant une pondération par moindres carrés. Les vitesses ont été estimées avec des modèles de bruit qui incluent les corrélations temporelles des séries temporelles des coordonnées tridimensionnelles. Le champ de vitesse horizontale montre la rotation antihoraire de la plaque nord-américaine avec une vitesse moyenne de 16,8±0,7 mm/an dans un modèle sans rotation nette (no-net-rotation) par rapport à l’ITRF2008. Le champ de vitesse verticale confirme un soulèvement dû à l’ajustement isostatique glaciaire partout dans l’est du Canada avec un taux maximal de 13,7±1,2 mm/an et un affaissement vers le sud, principalement au nord des États-Unis, avec un taux typique de −1 à −2 mm/an et un taux minimum de −2,7±1,4 mm/an. Le comportement du bruit des séries temporelles des coordonnées GPS tridimensionnelles a été analysé en utilisant une analyse spectrale et la méthode du maximum de vraisemblance pour tester cinq modèles de bruit: loi de puissance; bruit blanc; bruit blanc et bruit de scintillation; bruit blanc et marche aléatoire; bruit blanc, bruit de scintillation et marche aléatoire. Les résultats montrent que la combinaison bruit blanc et bruit de scintillation est le meilleur modèle pour décrire la partie stochastique des séries temporelles. Les amplitudes de tous les modèles de bruit sont plus faibles dans la direction nord et plus grandes dans la direction verticale. Les amplitudes du bruit blanc sont à peu près égales à travers la zone d’étude et sont donc surpassées, dans toutes les directions, par le bruit de scintillation et de marche aléatoire. Le modèle de bruit de scintillation augmente l’incertitude des vitesses estimées par un facteur de 5 à 38 par rapport au modèle de bruit blanc. Les vitesses estimées de tous les modèles de bruit sont statistiquement cohérentes. Les paramètres estimés du pôle eulérien de rotation pour cette région sont légèrement, mais significativement, différents de la rotation globale de la plaque nord-américaine. Cette différence reflète potentiellement les contraintes locales dans cette région sismique et les contraintes causées par la différence des vitesses intraplaques entre les deux rives du fleuve Saint-Laurent. La déformation de la croûte terrestre de la région a été étudiée en utilisant la méthode de collocation par moindres carrés. Les vitesses horizontales interpolées montrent un mouvement cohérent spatialement: soit un mouvement radial vers l’extérieur pour les centres de soulèvement maximal au nord et un mouvement radial vers l’intérieur pour les centres d’affaissement maximal au sud, avec une vitesse typique de 1 à 1,6±0,4 mm/an. Cependant, ce modèle devient plus complexe près des marges des anciennes zones glaciaires. Basées selon leurs directions, les vitesses horizontales intraplaques peuvent être divisées en trois zones distinctes. Cela confirme les conclusions d’autres chercheurs sur l’existence de trois dômes de glace dans la région d’étude avant le dernier maximum glaciaire. Une corrélation spatiale est observée entre les zones de vitesses horizontales intraplaques de magnitude plus élevée et les zones sismiques le long du fleuve Saint-Laurent. Les vitesses verticales ont ensuite été interpolées pour modéliser la déformation verticale. Le modèle montre un taux de soulèvement maximal de 15,6 mm/an au sud-est de la baie d’Hudson et un taux d’affaissement typique de 1 à 2 mm/an au sud, principalement dans le nord des États-Unis. Le long du fleuve Saint-Laurent, les mouvements horizontaux et verticaux sont cohérents spatialement. Il y a un déplacement vers le sud-est d’une magnitude d’environ 1,3 mm/an et un soulèvement moyen de 3,1 mm/an par rapport à la plaque l’Amérique du Nord. Le taux de déformation verticale est d’environ 2,4 fois plus grand que le taux de déformation horizontale intraplaque. Les résultats de l’analyse de déformation montrent l’état actuel de déformation dans l’est du Canada sous la forme d’une expansion dans la partie nord (la zone se soulève) et d’une compression dans la partie sud (la zone s’affaisse). Les taux de rotation sont en moyenne de 0,011°/Ma. Nous avons observé une compression NNO-SSE avec un taux de 3.6 à 8.1 nstrain/an dans la zone sismique du Bas-Saint-Laurent. Dans la zone sismique de Charlevoix, une expansion avec un taux de 3,0 à 7,1 nstrain/an est orientée ENE-OSO. Dans la zone sismique de l’Ouest du Québec, la déformation a un mécanisme de cisaillement avec un taux de compression de 1,0 à 5,1 nstrain/an et un taux d’expansion de 1.6 à 4.1 nstrain/an. Ces mesures sont conformes, au premier ordre, avec les modèles d’ajustement isostatique glaciaire et avec la contrainte de compression horizontale maximale du projet World Stress Map, obtenue à partir de la théorie des mécanismes focaux (focal mechanism method).
Resumo:
In this contribution, a system identification procedure of a two-input Wiener model suitable for the analysis of the disturbance behavior of integrated nonlinear circuits is presented. The identified block model is comprised of two linear dynamic and one static nonlinear block, which are determined using an parameterized approach. In order to characterize the linear blocks, an correlation analysis using a white noise input in combination with a model reduction scheme is adopted. After having characterized the linear blocks, from the output spectrum under single tone excitation at each input a linear set of equations will be set up, whose solution gives the coefficients of the nonlinear block. By this data based black box approach, the distortion behavior of a nonlinear circuit under the influence of an interfering signal at an arbitrary input port can be determined. Such an interfering signal can be, for example, an electromagnetic interference signal which conductively couples into the port of consideration. © 2011 Author(s).
Resumo:
We study the chaos decomposition of self-intersection local times and their regularization, with a particular view towards Varadhan's renormalization for the planar Edwards model.
Resumo:
This volume presents a collection of papers covering applications from a wide range of systems with infinitely many degrees of freedom studied using techniques from stochastic and infinite dimensional analysis, e.g. Feynman path integrals, the statistical mechanics of polymer chains, complex networks, and quantum field theory. Systems of infinitely many degrees of freedom create their particular mathematical challenges which have been addressed by different mathematical theories, namely in the theories of stochastic processes, Malliavin calculus, and especially white noise analysis. These proceedings are inspired by a conference held on the occasion of Prof. Ludwig Streit’s 75th birthday and celebrate his pioneering and ongoing work in these fields.
Resumo:
In the study of the spatial characteristics of the visual channels, the power spectrum model of visual masking is one of the most widely used. When the task is to detect a signal masked by visual noise, this classical model assumes that the signal and the noise are previously processed by a bank of linear channels and that the power of the signal at threshold is proportional to the power of the noise passing through the visual channel that mediates detection. The model also assumes that this visual channel will have the highest ratio of signal power to noise power at its output. According to this, there are masking conditions where the highest signal-to-noise ratio (SNR) occurs in a channel centered in a spatial frequency different from the spatial frequency of the signal (off-frequency looking). Under these conditions the channel mediating detection could vary with the type of noise used in the masking experiment and this could affect the estimation of the shape and the bandwidth of the visual channels. It is generally believed that notched noise, white noise and double bandpass noise prevent off-frequency looking, and high-pass, low-pass and bandpass noises can promote it independently of the channel's shape. In this study, by means of a procedure that finds the channel that maximizes the SNR at its output, we performed numerical simulations using the power spectrum model to study the characteristics of masking caused by six types of one-dimensional noise (white, high-pass, low-pass, bandpass, notched, and double bandpass) for two types of channel's shape (symmetric and asymmetric). Our simulations confirm that (1) high-pass, low-pass, and bandpass noises do not prevent the off-frequency looking, (2) white noise satisfactorily prevents the off-frequency looking independently of the shape and bandwidth of the visual channel, and interestingly we proved for the first time that (3) notched and double bandpass noises prevent off-frequency looking only when the noise cutoffs around the spatial frequency of the signal match the shape of the visual channel (symmetric or asymmetric) involved in the detection. In order to test the explanatory power of the model with empirical data, we performed six visual masking experiments. We show that this model, with only two free parameters, fits the empirical masking data with high precision. Finally, we provide equations of the power spectrum model for six masking noises used in the simulations and in the experiments.
Resumo:
A photovoltaic cell is a component which converts light energy into electrical energy. Different environmental parameters and internal parameters have a great impact on the output of the photovoltaic cell. To identify its characteristics and estimate the output, the well known Shockley diode equation is used. This equation contains all the parameters, as one environmental and different internal. The properties of these parameters were studied and their sensitivity have been analyzed through the use of an error function; this error function allows the study of the behaviour of the parameters and their characteristics against the output of the photovoltaic cell through the analysis of its curves giving the sensitivity of the different parameters to the output of the photovoltaic cell. Using these results the impact of the parameters of the photovoltaic cell has been clearly identified. White noise is included both with the ideal values and the simulation and the ideal value is imposed to get the real time environment flavor. This work analyses both systems with and without white noise.
Resumo:
This thesis is a compilation of 6 papers that the author has written together with Alberto Lanconelli (chapters 3, 5 and 8) and Hyun-Jung Kim (ch 7). The logic thread that link all these chapters together is the interest to analyze and approximate the solutions of certain stochastic differential equations using the so called Wick product as the basic tool. In the first chapter we present arguably the most important achievement of this thesis; namely the generalization to multiple dimensions of a Wick-Wong-Zakai approximation theorem proposed by Hu and Oksendal. By exploiting the relationship between the Wick product and the Malliavin derivative we propose an original reduction method which allows us to approximate semi-linear systems of stochastic differential equations of the Itô type. Furthermore in chapter 4 we present a non-trivial extension of the aforementioned results to the case in which the system of stochastic differential equations are driven by a multi-dimensional fraction Brownian motion with Hurst parameter bigger than 1/2. In chapter 5 we employ our approach and present a “short time” approximation for the solution of the Zakai equation from non-linear filtering theory and provide an estimation of the speed of convergence. In chapters 6 and 7 we study some properties of the unique mild solution for the Stochastic Heat Equation driven by spatial white noise of the Wick-Skorohod type. In particular by means of our reduction method we obtain an alternative derivation of the Feynman-Kac representation for the solution, we find its optimal Hölder regularity in time and space and present a Feynman-Kac-type closed form for its spatial derivative. Chapter 8 treats a somewhat different topic; in particular we investigate some probabilistic aspects of the unique global strong solution of a two dimensional system of semi-linear stochastic differential equations describing a predator-prey model perturbed by Gaussian noise.
Resumo:
Proceedings of IEEE, ISCAS 2003, Vol.I, pp. 877-880
Resumo:
We consider mean-first-passage times and transition rates in bistable systems driven by white shot noise. We obtain closed analytical expressions, asymptotic approximations, and numerical simulations in two cases of interest: (i) jumps sizes exponentially distributed and (ii) jumps of the same size.
Resumo:
By means of Malliavin Calculus we see that the classical Hull and White formulafor option pricing can be extended to the case where the noise driving thevolatility process is correlated with the noise driving the stock prices. Thisextension will allow us to construct option pricing approximation formulas.Numerical examples are presented.
Resumo:
Proton T1 relaxation times of metabolites in the human brain have not previously been published at 7 T. In this study, T1 values of CH3 and CH2 group of N-acetylaspartate and total creatine as well as nine other brain metabolites were measured in occipital white matter and gray matter at 7 T using an inversion-recovery technique combined with a newly implemented semi-adiabatic spin-echo full-intensity acquired localized spectroscopy sequence (echo time = 12 ms). The mean T1 values of metabolites in occipital white matter and gray matter ranged from 0.9 to 2.2 s. Among them, the T1 of glutathione, scyllo-inositol, taurine, phosphorylethanolamine, and N-acetylaspartylglutamate were determined for the first time in the human brain. Significant differences in T1 between white matter and gray matter were found for water (-28%), total choline (-14%), N-acetylaspartylglutamate (-29%), N-acetylaspartate (+4%), and glutamate (+8%). An increasing trend in T1 was observed when compared with previously reported values of N-acetylaspartate (CH3 ), total creatine (CH3 ), and total choline at 3 T. However, for N-acetylaspartate (CH3 ), total creatine, and total choline, no substantial differences compared to previously reported values at 9.4 T were discernible. The T1 values reported here will be useful for the quantification of metabolites and signal-to-noise optimization in human brain at 7 T. Magn Reson Med 69:931-936, 2013. © 2012 Wiley Periodicals, Inc.
Resumo:
The general theory of nonlinear relaxation times is developed for the case of Gaussian colored noise. General expressions are obtained and applied to the study of the characteristic decay time of unstable states in different situations, including white and colored noise, with emphasis on the distributed initial conditions. Universal effects of the coupling between colored noise and random initial conditions are predicted.
Resumo:
BACKGROUND: Since the emergence of diffusion tensor imaging, a lot of work has been done to better understand the properties of diffusion MRI tractography. However, the validation of the reconstructed fiber connections remains problematic in many respects. For example, it is difficult to assess whether a connection is the result of the diffusion coherence contrast itself or the simple result of other uncontrolled parameters like for example: noise, brain geometry and algorithmic characteristics. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we propose a method to estimate the respective contributions of diffusion coherence versus other effects to a tractography result by comparing data sets with and without diffusion coherence contrast. We use this methodology to assign a confidence level to every gray matter to gray matter connection and add this new information directly in the connectivity matrix. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that whereas we can have a strong confidence in mid- and long-range connections obtained by a tractography experiment, it is difficult to distinguish between short connections traced due to diffusion coherence contrast from those produced by chance due to the other uncontrolled factors of the tractography methodology.
Resumo:
Background: b-value is the parameter characterizing the intensity of the diffusion weighting during image acquisition. Data acquisition is usually performed with low b value (b~1000 s/mm2). Evidence shows that high b-values (b>2000 s/mm2) are more sensitive to the slow diffusion compartment (SDC) and maybe more sensitive in detecting white matter (WM) anomalies in schizophrenia.Methods: 12 male patients with schizophrenia (mean age 35 +/-3 years) and 16 healthy male controls matched for age were scanned with a low b-value (1000 s/mm2) and a high b-value (4000 s/mm2) protocol. Apparent diffusion coefficient (ADC) is a measure of the average diffusion distance of water molecules per time unit (mm2/s). ADC maps were generated for all individuals. 8 region of interests (frontal and parietal region bilaterally, centrum semi-ovale bilaterally and anterior and posterior corpus callosum) were manually traced blind to diagnosis.Results: ADC measures acquired with high b-value imaging were more sensitive in detecting differences between schizophrenia patients and healthy controls than low b-value imaging with a gain in significance by a factor of 20- 100 times despite the lower image Signal-to-noise ratio (SNR). Increased ADC was identified in patient's WM (p=0.00015) with major contributions from left and right centrum semi-ovale and to a lesser extent right parietal region.Conclusions: Our results may be related to the sensitivity of high b-value imaging to the SDC believed to reflect mainly the intra-axonal and myelin bound water pool. High b-value imaging might be more sensitive and specific to WM anomalies in schizophrenia than low b-value imaging