865 resultados para Western Equine Encephalomyelitis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two experiments were conducted to investigate the effects of equine chorionic gonadotropin (eCG) at progestin removal and gonadotropin-releasing hormone (GnRH) at timed artificial insemination (TA!) on ovarian follicular dynamics (Experiment 1) and pregnancy rates (Experiment 2) in suckled Nelore (Bos indicus) cows. Both experiments were 2 x 2 factorials (eCG or No eCG, and GnRH or No GnRH), with identical treatments. In Experiment 1, 50 anestrous cows, 134.5 +/- 2.3 d postpartum, received a 3 mg norgestomet ear implant se, plus 3 mg norgestomet and 5 mg estradiol valerate im on Day 0. The implant was removed on Day 9, with TAI 54 h later. Cows received 400 IU eCG or no further treatment on Day 9 and GnRH (100 mu g gonadorelin) or no further treatment at TAI. Treatment with eCG increased the growth rate of the largest follicle from Days 9 to 11 (means +/- SEM, 1.53 +/- 0.1 vs. 0.48 +/- 0.1 mm/d; P < 0.0001), its diameter on Day 11(11.4 +/- 0.6 vs. 9.3 +/- 0.7 mm; P = 0.03), as well as ovulation rate (80.8% vs. 50.0%, P = 0.02), whereas GnRH improved the synchrony of ovulation (72.0 +/- 1.1 VS. 71.1 +/- 2.0 h). In Experiment 2 (n = 599 cows, 40 to 120 d postpartum), pregnancy rates differed (P = 0.004) among groups (27.6%, 40.1%, 47.7%, and 55.7% for Control. GnRH, eCG, and eCG + GnRH groups). Both eCG and GnRH improved pregnancy rates (51.7% vs. 318%, P = 0.002; and 48.0% vs 37.6%, P = 0.02, respectively), although their effects were not additive (no significant interaction). In conclusion, eCG at norgestomet implant removal increased the growth rate of the largest follicle (LF) from implant removal to TAI, the diameter of the LF at TAI, and rates of ovulation and pregnancy rates. Furthermore, GnRH at TAI improved the synchrony of ovulations and pregnancy rates in postpartum Nelore cows treated with a norgestomet-based TAI protocol. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objectives were to evaluate the effects of equine chorionic gonadotropin (eCG) supplementation (with or without eCG) and type of ovulatory stimulus (GnRH or ECP) on ovarian follicular dynamics, luteal function, and pregnancies per AI (P/AI) in Holstein cows receiving timed artificial insemination (TAI). On Day 0, 742 cows in a total of 782 breedings, received 2 mg of estradiol benzoate (EB) and one intravaginal progesterone (P4) insert (CIDR). On Day 8, the CIDR was removed, and all cows were given PGF2 alpha and assigned to one of four treatments in a 2 x 2 factorial arrangement: (1) CG: GnRH 48 h later; (2) CE: ECP; (3) EG: eCG + GnRH 48 It later; (4) EE: eCG + ECP. There were significant interactions for eCG x ovulatory stimulus and eCG x BCS. Cows in the CG group were less likely (28.9% vs. 33.8%; P < 0.05) to become pregnant compared with those in the EG group (odds ratio [OR] = 0.28). There were no differences in P/AI between CE and EE cows (30.9% vs. 29.1%; OR = 0.85; P = 0.56), respectively. Thinner cows not receiving eCG had lower P/AI than thinner cows receiving eCG (15.2% vs. 38.0%; OR = 0.20; P < 0.01). Treatment with eCG tended to increase serum progestesterone concentrations during the diestrus following synchronized ovulation (P < 0.10). However, the treatment used to induce ovulation did not affect CL volume or serum progesterone concentrations. In conclusion, both ECP and GnRH yielded comparable P/AI. However, eCG treatment at CIDR removal increased pregnancy rate in cows induced to ovulate with GnRH and in cows with lower BCS. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The advantages of using cryopreserved semen in equine reproduction are well known. During cryopreservationl spermatozoa undergo many changes that lead to a decrease in fertility. There is no agreement on the ideal sperm dose and concentration to maximize fertility rates. Thus, the objectives of this experiment were to evaluate sperm motion by computer-assisted analysis (CASA), sperm membrane integrity and function with fluorescence probes of cryopreserved sperm at three concentrations: 100 (C100), 200 (C200) and 400 x 10(6) sperm/mL (C400), and two straw volumes (0.50 and 0.25 mL). There was no interaction between sperm concentration and storage volume (P > .05). Sperm motion characteristics were influenced by concentration (C100 > C200 > C400; P < .05). Curvilinear velocity (VCL) in 0.25-mL straws had higher average values (P < .05). Membrane integrity and function were not changed by straw volume (P > .05). However, sperm concentration changed the percentage of cells with intact plasma membrane (C100 > C200 > C400; P < .05) and the percentage of cells with high mitochondrial membrane potential (C100 = C200; P > .05 and C400 < C100 and C200; P < .05). According to this experiment, the best freeing method was that involving 100 x 10(6) sperm/mL, regardless of straw volume.