907 resultados para Weighted regression


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Use of analgesics has been increasingly recognized as a major public health issue with important consequences in Turkey. The objective of the study was to determine the prevalence and patterns of analgesics usage and associated factors in adults with pain complaints. METHODS: A cross-sectional study was conducted in 15 cities selected from five demographic regions in Turkey. The study sample population comprised 1.909 adults 18-65 age groups suffering from pain. The sampling method was multi-step stratified weighted quota-adjusted sampling. Data were collected by face-to-face interviews using a semi-structured survey questionnaire consisting of 28 questions. Odds ratios were produced by logistic regression analyses. RESULTS: The prevalence of analgesic use was 73.1%, and it was higher in females (75.7%; p<0.05), in subjects 45-54 years (81.4%; p<0.05), in subjects in rural areas (74.6%; p<0.05), in subjects in northern region (84.3%; p<0.05), in illiterate subjects (79.1%; p>0.05), and in subjects of lower socioeconomic status (74.1%; p>0.05). One in ten of the participants used non-prescription analgesics. Non-prescription analgesics were more prevalent among the 55-65 age groups (18.1%; p<0.05), among female (11.6%; p>0.05), among the urban population (10.7%; p>0.05), and in subjects of lower middle socioeconomic status (13.2%; p<0.05). Logistic regression showed statistically significant ORs only for age groups, duration of education, socioeconomic status, and demographic regions (p<0.05). CONCLUSIONS: The results showed that the prevalence of analgesic use and prescription analgesic use is high in Turkey, and their use is related to sociodemographic characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE:To analyze factors associated with cervical cancer screening failure. METHODS:Population-based cross-sectional study with self-weighted two-stage cluster sampling conducted in the cities of Fortaleza (Northeastern Brazil) and Rio de Janeiro (Southeastern Brazil) in 2002. Subjects were women aged 25-59 years in the last three years prior to the study. Data were analyzed through Poisson regression using a hierarchical model. RESULTS: The proportion of women who did not undergo the Pap smear test in Fortaleza and Rio de Janeiro was 19.1% (95% CI: 16.1;22.1) and 16.5% (95% CI: 14.1;18.9), respectively. Higher prevalence ratios of cervical cancer screening failure in both cities were seen among women with low education and low per capita income, old age, unmarried, who never underwent mammography, clinical breast examination, and blood glucose and cholesterol level testing. Smokers also had lower screening rates compared to non-smoker women and this difference was only statistically significant in Rio de Janeiro. CONCLUSIONS:The study findings point to the need of intervention focusing particularly women in worse socioeconomic conditions and access to healthcare, old-aged and unmarried. Education activities must prioritize screening of asymptomatic women and early diagnosis for symptomatic women and access to adequate diagnostic methods and treatment should be provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prediction of the time and the efficiency of the remediation of contaminated soils using soil vapor extraction remain a difficult challenge to the scientific community and consultants. This work reports the development of multiple linear regression and artificial neural network models to predict the remediation time and efficiency of soil vapor extractions performed in soils contaminated separately with benzene, toluene, ethylbenzene, xylene, trichloroethylene, and perchloroethylene. The results demonstrated that the artificial neural network approach presents better performances when compared with multiple linear regression models. The artificial neural network model allowed an accurate prediction of remediation time and efficiency based on only soil and pollutants characteristics, and consequently allowing a simple and quick previous evaluation of the process viability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radiotherapy is one of the main treatments used against cancer. Radiotherapy uses radiation to destroy cancerous cells trying, at the same time, to minimize the damages in healthy tissues. The planning of a radiotherapy treatment is patient dependent, resulting in a lengthy trial and error procedure until a treatment complying as most as possible with the medical prescription is found. Intensity Modulated Radiation Therapy (IMRT) is one technique of radiation treatment that allows the achievement of a high degree of conformity between the area to be treated and the dose absorbed by healthy tissues. Nevertheless, it is still not possible to eliminate completely the potential treatments’ side-effects. In this retrospective study we use the clinical data from patients with head-and-neck cancer treated at the Portuguese Institute of Oncology of Coimbra and explore the possibility of classifying new and untreated patients according to the probability of xerostomia 12 months after the beginning of IMRT treatments by using a logistic regression approach. The results obtained show that the classifier presents a high discriminative ability in predicting the binary response “at risk for xerostomia at 12 months”

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hyperspectral remote sensing exploits the electromagnetic scattering patterns of the different materials at specific wavelengths [2, 3]. Hyperspectral sensors have been developed to sample the scattered portion of the electromagnetic spectrum extending from the visible region through the near-infrared and mid-infrared, in hundreds of narrow contiguous bands [4, 5]. The number and variety of potential civilian and military applications of hyperspectral remote sensing is enormous [6, 7]. Very often, the resolution cell corresponding to a single pixel in an image contains several substances (endmembers) [4]. In this situation, the scattered energy is a mixing of the endmember spectra. A challenging task underlying many hyperspectral imagery applications is then decomposing a mixed pixel into a collection of reflectance spectra, called endmember signatures, and the corresponding abundance fractions [8–10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. Linear mixing model holds approximately when the mixing scale is macroscopic [13] and there is negligible interaction among distinct endmembers [3, 14]. If, however, the mixing scale is microscopic (or intimate mixtures) [15, 16] and the incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [17], the linear model is no longer accurate. Linear spectral unmixing has been intensively researched in the last years [9, 10, 12, 18–21]. It considers that a mixed pixel is a linear combination of endmember signatures weighted by the correspondent abundance fractions. Under this model, and assuming that the number of substances and their reflectance spectra are known, hyperspectral unmixing is a linear problem for which many solutions have been proposed (e.g., maximum likelihood estimation [8], spectral signature matching [22], spectral angle mapper [23], subspace projection methods [24,25], and constrained least squares [26]). In most cases, the number of substances and their reflectances are not known and, then, hyperspectral unmixing falls into the class of blind source separation problems [27]. Independent component analysis (ICA) has recently been proposed as a tool to blindly unmix hyperspectral data [28–31]. ICA is based on the assumption of mutually independent sources (abundance fractions), which is not the case of hyperspectral data, since the sum of abundance fractions is constant, implying statistical dependence among them. This dependence compromises ICA applicability to hyperspectral images as shown in Refs. [21, 32]. In fact, ICA finds the endmember signatures by multiplying the spectral vectors with an unmixing matrix, which minimizes the mutual information among sources. If sources are independent, ICA provides the correct unmixing, since the minimum of the mutual information is obtained only when sources are independent. This is no longer true for dependent abundance fractions. Nevertheless, some endmembers may be approximately unmixed. These aspects are addressed in Ref. [33]. Under the linear mixing model, the observations from a scene are in a simplex whose vertices correspond to the endmembers. Several approaches [34–36] have exploited this geometric feature of hyperspectral mixtures [35]. Minimum volume transform (MVT) algorithm [36] determines the simplex of minimum volume containing the data. The method presented in Ref. [37] is also of MVT type but, by introducing the notion of bundles, it takes into account the endmember variability usually present in hyperspectral mixtures. The MVT type approaches are complex from the computational point of view. Usually, these algorithms find in the first place the convex hull defined by the observed data and then fit a minimum volume simplex to it. For example, the gift wrapping algorithm [38] computes the convex hull of n data points in a d-dimensional space with a computational complexity of O(nbd=2cþ1), where bxc is the highest integer lower or equal than x and n is the number of samples. The complexity of the method presented in Ref. [37] is even higher, since the temperature of the simulated annealing algorithm used shall follow a log( ) law [39] to assure convergence (in probability) to the desired solution. Aiming at a lower computational complexity, some algorithms such as the pixel purity index (PPI) [35] and the N-FINDR [40] still find the minimum volume simplex containing the data cloud, but they assume the presence of at least one pure pixel of each endmember in the data. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. PPI algorithm uses the minimum noise fraction (MNF) [41] as a preprocessing step to reduce dimensionality and to improve the signal-to-noise ratio (SNR). The algorithm then projects every spectral vector onto skewers (large number of random vectors) [35, 42,43]. The points corresponding to extremes, for each skewer direction, are stored. A cumulative account records the number of times each pixel (i.e., a given spectral vector) is found to be an extreme. The pixels with the highest scores are the purest ones. N-FINDR algorithm [40] is based on the fact that in p spectral dimensions, the p-volume defined by a simplex formed by the purest pixels is larger than any other volume defined by any other combination of pixels. This algorithm finds the set of pixels defining the largest volume by inflating a simplex inside the data. ORA SIS [44, 45] is a hyperspectral framework developed by the U.S. Naval Research Laboratory consisting of several algorithms organized in six modules: exemplar selector, adaptative learner, demixer, knowledge base or spectral library, and spatial postrocessor. The first step consists in flat-fielding the spectra. Next, the exemplar selection module is used to select spectral vectors that best represent the smaller convex cone containing the data. The other pixels are rejected when the spectral angle distance (SAD) is less than a given thresh old. The procedure finds the basis for a subspace of a lower dimension using a modified Gram–Schmidt orthogonalizati on. The selected vectors are then projected onto this subspace and a simplex is found by an MV T pro cess. ORA SIS is oriented to real-time target detection from uncrewed air vehicles using hyperspectral data [46]. In this chapter we develop a new algorithm to unmix linear mixtures of endmember spectra. First, the algorithm determines the number of endmembers and the signal subspace using a newly developed concept [47, 48]. Second, the algorithm extracts the most pure pixels present in the data. Unlike other methods, this algorithm is completely automatic and unsupervised. To estimate the number of endmembers and the signal subspace in hyperspectral linear mixtures, the proposed scheme begins by estimating sign al and noise correlation matrices. The latter is based on multiple regression theory. The signal subspace is then identified by selectin g the set of signal eigenvalue s that best represents the data, in the least-square sense [48,49 ], we note, however, that VCA works with projected and with unprojected data. The extraction of the end members exploits two facts: (1) the endmembers are the vertices of a simplex and (2) the affine transformation of a simplex is also a simplex. As PPI and N-FIND R algorithms, VCA also assumes the presence of pure pixels in the data. The algorithm iteratively projects data on to a direction orthogonal to the subspace spanned by the endmembers already determined. The new end member signature corresponds to the extreme of the projection. The algorithm iterates until all end members are exhausted. VCA performs much better than PPI and better than or comparable to N-FI NDR; yet it has a computational complexity between on e and two orders of magnitude lower than N-FINDR. The chapter is structure d as follows. Section 19.2 describes the fundamentals of the proposed method. Section 19.3 and Section 19.4 evaluate the proposed algorithm using simulated and real data, respectively. Section 19.5 presents some concluding remarks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An individual experiences double coverage when he bene ts from more than one health insurance plan at the same time. This paper examines the impact of such supplementary insurance on the demand for health care services. Its novelty is that within the context of count data modelling and without imposing restrictive parametric assumptions, the analysis is carried out for di¤erent points of the conditional distribution, not only for its mean location. Results indicate that moral hazard is present across the whole outcome distribution for both public and private second layers of health insurance coverage but with greater magnitude in the latter group. By looking at di¤erent points we unveil that stronger double coverage e¤ects are smaller for high levels of usage. We use data for Portugal, taking advantage of particular features of the public and private protection schemes on top of the statutory National Health Service. By exploring the last Portuguese Health Survey, we were able to evaluate their impacts on the consumption of doctor visi

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paper presented at Geo-Spatial Crossroad GI_Forum, Salzburg, Austria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last two decades, small strain shear modulus became one of the most important geotechnical parameters to characterize soil stiffness. Finite element analysis have shown that in-situ stiffness of soils and rocks is much higher than what was previously thought and that stress-strain behaviour of these materials is non-linear in most cases with small strain levels, especially in the ground around retaining walls, foundations and tunnels, typically in the order of 10−2 to 10−4 of strain. Although the best approach to estimate shear modulus seems to be based in measuring seismic wave velocities, deriving the parameter through correlations with in-situ tests is usually considered very useful for design practice.The use of Neural Networks for modeling systems has been widespread, in particular within areas where the great amount of available data and the complexity of the systems keeps the problem very unfriendly to treat following traditional data analysis methodologies. In this work, the use of Neural Networks and Support Vector Regression is proposed to estimate small strain shear modulus for sedimentary soils from the basic or intermediate parameters derived from Marchetti Dilatometer Test. The results are discussed and compared with some of the most common available methodologies for this evaluation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last two decades, small strain shear modulus became one of the most important geotechnical parameters to characterize soil stiffness. Finite element analysis have shown that in-situ stiffness of soils and rocks is much higher than what was previously thought and that stress-strain behaviour of these materials is non-linear in most cases with small strain levels, especially in the ground around retaining walls, foundations and tunnels, typically in the order of 10−2 to 10−4 of strain. Although the best approach to estimate shear modulus seems to be based in measuring seismic wave velocities, deriving the parameter through correlations with in-situ tests is usually considered very useful for design practice.The use of Neural Networks for modeling systems has been widespread, in particular within areas where the great amount of available data and the complexity of the systems keeps the problem very unfriendly to treat following traditional data analysis methodologies. In this work, the use of Neural Networks and Support Vector Regression is proposed to estimate small strain shear modulus for sedimentary soils from the basic or intermediate parameters derived from Marchetti Dilatometer Test. The results are discussed and compared with some of the most common available methodologies for this evaluation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

de imagem em RM, caracterizada pela sua alta resolução espacial e grande sensibilidade a diferenças de susceptibilidade magnética dos tecidos, acentuando as propriedades paramagnéticas de produtos como a desoxihemoglobina, hemossiderina, ferro e cálcio e sendo particularmente útil na avaliação das estruturas venosas. Objectivos: O objectivo deste trabalho é fazer uma breve revisão das aplicações clínicas da sequência SWI em neuropediatria e demonstrar a sua grande utilidade, nomeadamente em comparação as a sequência T2*. Material e Métodos: Os exames foram realizados a crianças com idades compreendidas entre o período neonatal e os 16 anos, internadas ou seguidas em consulta no Hospital Pediátrico D. Estefânia; as imagens SWI foram efectuadas em equipamento Siemens 1.5 T, Avanto, com os seguintes parâmetros: TR 49, TE 40, flip angle 15, espessura 1,6mm. Resultados: Apresentamos vários casos ilustrativos de patologias em que o SWI demonstra a sua utilidade e mais-valia, nomeadamente na detecção de lesões hemorrágicas recentes ou antigas em diferentes contextos particulares em neuropediatria (patologia hipoxico-isquémica, vascular, trauma não acidental), detecção de cavernomas e anomalias venosas de desenvolvimento, avaliação de tumores e doenças neurodegenerativas. Conclusão: A sequência SWI é bastante útil na avaliação imagiológica de várias patologias e variantes venosas em neuropediatria, fornecendo uma informação adicional com implicações diagnósticas e prognósticas comparativamente com o T2*, obviando também a administração de contraste para avaliação de estruturas venosas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In health related research it is common to have multiple outcomes of interest in a single study. These outcomes are often analysed separately, ignoring the correlation between them. One would expect that a multivariate approach would be a more efficient alternative to individual analyses of each outcome. Surprisingly, this is not always the case. In this article we discuss different settings of linear models and compare the multivariate and univariate approaches. We show that for linear regression models, the estimates of the regression parameters associated with covariates that are shared across the outcomes are the same for the multivariate and univariate models while for outcome-specific covariates the multivariate model performs better in terms of efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Estatística e Gestão do Risco, especialidade em Estatística

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Malaria is a serious problem in the Brazilian Amazon region, and the detection of possible risk factors could be of great interest for public health authorities. The objective of this article was to investigate the association between environmental variables and the yearly registers of malaria in the Amazon region using Bayesian spatiotemporal methods. METHODS: We used Poisson spatiotemporal regression models to analyze the Brazilian Amazon forest malaria count for the period from 1999 to 2008. In this study, we included some covariates that could be important in the yearly prediction of malaria, such as deforestation rate. We obtained the inferences using a Bayesian approach and Markov Chain Monte Carlo (MCMC) methods to simulate samples for the joint posterior distribution of interest. The discrimination of different models was also discussed. RESULTS: The model proposed here suggests that deforestation rate, the number of inhabitants per km², and the human development index (HDI) are important in the prediction of malaria cases. CONCLUSIONS: It is possible to conclude that human development, population growth, deforestation, and their associated ecological alterations are conducive to increasing malaria risk. We conclude that the use of Poisson regression models that capture the spatial and temporal effects under the Bayesian paradigm is a good strategy for modeling malaria counts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extreme value models are widely used in different areas. The Birnbaum–Saunders distribution is receiving considerable attention due to its physical arguments and its good properties. We propose a methodology based on extreme value Birnbaum–Saunders regression models, which includes model formulation, estimation, inference and checking. We further conduct a simulation study for evaluating its performance. A statistical analysis with real-world extreme value environmental data using the methodology is provided as illustration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background:Previous reports have inferred a linear relationship between LDL-C and changes in coronary plaque volume (CPV) measured by intravascular ultrasound. However, these publications included a small number of studies and did not explore other lipid markers.Objective:To assess the association between changes in lipid markers and regression of CPV using published data.Methods:We collected data from the control, placebo and intervention arms in studies that compared the effect of lipidlowering treatments on CPV, and from the placebo and control arms in studies that tested drugs that did not affect lipids. Baseline and final measurements of plaque volume, expressed in mm3, were extracted and the percentage changes after the interventions were calculated. Performing three linear regression analyses, we assessed the relationship between percentage and absolute changes in lipid markers and percentage variations in CPV.Results:Twenty-seven studies were selected. Correlations between percentage changes in LDL-C, non-HDL-C, and apolipoprotein B (ApoB) and percentage changes in CPV were moderate (r = 0.48, r = 0.47, and r = 0.44, respectively). Correlations between absolute differences in LDL-C, non‑HDL-C, and ApoB with percentage differences in CPV were stronger (r = 0.57, r = 0.52, and r = 0.79). The linear regression model showed a statistically significant association between a reduction in lipid markers and regression of plaque volume.Conclusion:A significant association between changes in different atherogenic particles and regression of CPV was observed. The absolute reduction in ApoB showed the strongest correlation with coronary plaque regression.