942 resultados para Wave model
Resumo:
This paper presents an analytical modeling technique for the simulation of long-range ultrasonic guided waves in structures. The model may be used to predict the displacement field in a prismatic structure arising from any excitation arrangement and may therefore be used as a tool to design new inspection systems. It is computationally efficient and relatively simple to implement, yet gives accuracy similar to finite element analysis and semi-analytical finite element analysis methods. The model has many potential applications; one example is the optimization of part-circumferential arrays where access to the full circumference of the pipe is restricted. The model has been successfully validated by comparison with finite element solutions. Experimental validation has also been carried out using an array of piezoelectric transducer elements to measure the displacement field arising from a single transducer element in an 88.9-mm-diameter pipe. Good agreement has been obtained between the two models and the experimental data.
Resumo:
The objective of the research conducted by the authors is to explore the feasibility of determining reliable in situ values of shear modulus as a function of strain. In this paper the meaning of the material stiffness obtained from impact and harmonic excitation tests on a surface slab is discussed. A one-dimensional discrete model with the nonlinear material stiffness is used for this purpose. When a static load is applied followed by an impact excitation, if the amplitude of the impact is very small, the measured wave velocity using the cross-correlation indicates the wave velocity calculated from the tangent modulus corresponding to the state of stress caused by the applied static load. The duration of the impact affects the magnitude of the displacement and the particle velocity but has very little effect on the estimation of the wave velocity for the magnitudes considered herein. When a harmonic excitation is applied, the cross-correlation of the time histories at different depths estimates a wave velocity close to the one calculated from the secant modulus in the stress-strain loop under steady-state condition. Copyright © 2008 John Wiley & Sons, Ltd.
Resumo:
The valence subband energies and wave functions of a tensile strained quantum well are calculated by the plane wave expansion method within the 6 * 6 Luttinger-Kohn model. The effect of the number and period of plane-waves used for expansion on the stability of energy eigenvalues is examined. For practical calculation, it should choose the period large sufficiently to ensure the envelope functions vanish at the boundary and the number of plane waves large enough to ensure the energy eigenvalues keep unchanged within a prescribed range.
Resumo:
The light-front quark model has been applied to calculate the transition matrix elements of heavy hadron decays. However, it is noted that using the traditional wave functions of the light-front quark model given in the literature, the theoretically determined decay constants of the Gamma(nS) obviously contradict the data. This implies that the wave functions must be modified. Keeping the orthogonality among the nS states and fitting their decay constants, we obtain a series of the wave functions for Gamma(nS). Based on these wave functions and by analogy with the hydrogen atom, we suggest a modified analytical form for the Gamma(nS) wave functions. Using the modified wave functions, the obtained decay constants are close to the experimental data. Then we calculate the rates of radiative decays of Gamma(nS) -> eta(b) + gamma. Our predictions are consistent with the experimental data on decays Gamma(3S) -> eta(b) + gamma within the theoretical and experimental errors.
Resumo:
A new model is proposed to estimate the significant wave heights with ERS-1/2 scatterometer data. The results show that the relationship between wave parameters and radar backscattering cross section is similar to that between wind and the radar backscattering cross section. Therefore, the relationship between significant wave height and the radar backscattering cross section is established with a neural network algorithm, which is, if the average wave period is <= 7s, the root mean square of significant wave height retrieved from ERS-1/2 data is 0.51 m, or 0.72 m if it is >7s otherwise.
Resumo:
With the effective medium approximation theory of composites, a remedial model is proposed for estimating the microwave emissivity of sea surface under wave breaking driven by strong wind on the basis of an empirical model given by Pandey and Kakar. In our model, the effects of the shapes of seawater droplets and the thickness of whitecap layer (i.e. a composite layer of air and sea water droplets) over the sea surface on the microwave emissivity are investigated by calculating the effective dielectric constant of whitecaps layer. The wind speed is included in our model, and the responses of water droplets shapes, such as sphere and ellipsoid, to the emissivity are also discussed at different microwave frequencies. The model is in good agreement with the experimental data of microwave emissivity of sea surface at microwave frequencies of 6.6, 10.7 and 37GHz.
Resumo:
The first stages in the development of a new design tool, to be used by coastal engineers to improve the efficiency, analysis, design, management and operation of a wide range of coastal and harbour structures, are described. The tool is based on a two-dimensional numerical model, NEWMOTICS-2D, using the volume of fluid (VOF) method, which permits the rapid calculation of wave hydrodynamics at impermeable natural and man-made structures. The critical hydrodynamic flow processes and forces are identified together with the equations that describe these key processes. The different possible numerical approaches for the solution of these equations, and the types of numerical models currently available, are examined and assessed. Preliminary tests of the model, using comparisons with results from a series of hydraulic model test cases, are described. The results of these tests demonstrate that the VOF approach is particularly appropriate for the simulation of the dynamics of waves at coastal structures because of its flexibility in representing the complex free surfaces encountered during wave impact and breaking. The further programme of work, required to develop the existing model into a tool for use in routine engineering design, is outlined.
Resumo:
The Computational Fluid Dynamic (CFD) toolbox OpenFOAM is used to assess the applicability of Reynolds-Averaged Navier-Stokes (RANS) solvers to the simulation of Oscillating Wave Surge Converters (OWSC) in significant waves. Simulation of these flap type devices requires the solution of the equations of motion and the representation of the OWSC’s motion in a moving mesh. A new way to simulate the sea floor inside a section of the moving mesh with a moving dissipation zone is presented. To assess the accuracy of the new solver, experiments are conducted in regular and irregular wave traces for a full three dimensional model. Results of acceleration and flow features are presented for numerical and experimental data. It is found that the new numerical model reproduces experimental results within the bounds of experimental accuracy.
Resumo:
The constant-density Charney model describes the simplest unstable basic state with a planetary-vorticity gradient, which is uniform and positive, and baroclinicity that is manifest as a negative contribution to the potential-vorticity (PV) gradient at the ground and positive vertical wind shear. Together, these ingredients satisfy the necessary conditions for baroclinic instability. In Part I it was shown how baroclinic growth on a general zonal basic state can be viewed as the interaction of pairs of ‘counter-propagating Rossby waves’ (CRWs) that can be constructed from a growing normal mode and its decaying complex conjugate. In this paper the normal-mode solutions for the Charney model are studied from the CRW perspective.
Clear parallels can be drawn between the most unstable modes of the Charney model and the Eady model, in which the CRWs can be derived independently of the normal modes. However, the dispersion curves for the two models are very different; the Eady model has a short-wave cut-off, while the Charney model is unstable at short wavelengths. Beyond its maximum growth rate the Charney model has a neutral point at finite wavelength (r=1). Thereafter follows a succession of unstable branches, each with weaker growth than the last, separated by neutral points at integer r—the so-called ‘Green branches’. A separate branch of westward-propagating neutral modes also originates from each neutral point. By approximating the lower CRW as a Rossby edge wave and the upper CRW structure as a single PV peak with a spread proportional to the Rossby scale height, the main features of the ‘Charney branch’ (0
Resumo:
We report on a numerical study of the impact of short, fast inertia-gravity waves on the large-scale, slowly-evolving flow with which they co-exist. A nonlinear quasi-geostrophic numerical model of a stratified shear flow is used to simulate, at reasonably high resolution, the evolution of a large-scale mode which grows due to baroclinic instability and equilibrates at finite amplitude. Ageostrophic inertia-gravity modes are filtered out of the model by construction, but their effects on the balanced flow are incorporated using a simple stochastic parameterization of the potential vorticity anomalies which they induce. The model simulates a rotating, two-layer annulus laboratory experiment, in which we recently observed systematic inertia-gravity wave generation by an evolving, large-scale flow. We find that the impact of the small-amplitude stochastic contribution to the potential vorticity tendency, on the model balanced flow, is generally small, as expected. In certain circumstances, however, the parameterized fast waves can exert a dominant influence. In a flow which is baroclinically-unstable to a range of zonal wavenumbers, and in which there is a close match between the growth rates of the multiple modes, the stochastic waves can strongly affect wavenumber selection. This is illustrated by a flow in which the parameterized fast modes dramatically re-partition the probability-density function for equilibrated large-scale zonal wavenumber. In a second case study, the stochastic perturbations are shown to force spontaneous wavenumber transitions in the large-scale flow, which do not occur in their absence. These phenomena are due to a stochastic resonance effect. They add to the evidence that deterministic parameterizations in general circulation models, of subgrid-scale processes such as gravity wave drag, cannot always adequately capture the full details of the nonlinear interaction.