541 resultados para Waterways.
Resumo:
In January 2006 the Maumee Remedial Action Plan (RAP) Committee submitted a State II Watershed Restoration Plan for the Maumee River Great Lakes Area of Concern (AOC) area located in NW Ohio to the State of Ohio for review and endorsement (MRAC, 2006). The plan was created in order to fulfill the requirements, needs and/or use of five water quality programs including: Ohio Department of Natural Resources (DNR) Watershed Coordinator Program; Ohio EPA Great Lakes RAP Program; Ohio DNR Coastal Non-point Source Pollution Control Program; Ohio EPA Total Maximum Daily Load Program; and US Fish & Wildlife Service Natural Resources Damage Program. The plan is intended to serve as a comprehensive regional management approach for all jurisdictions, agencies, organizations, and individuals who are working to restore the watershed, waterways and associated coastal zone. The plan includes: background information and mapping regarding hydrology, geology, ecoregions, and land use, and identifies key causes and sources for water quality concerns within the six 11-digit hydrological units (HUCs), and one large river unit that comprise the Maumee AOC. Tables were also prepared that contains detailed project lists for each major watershed and was organized to facilitate the prioritization of research and planning efforts. Also key to the plan and project tables is a reference to the Ohio DNR Coastal Management Measures that may benefit from the implementation of an identified project. This paper will examine the development of the measures and their importance for coastal management and watershed planning in the Maumee AOC. (PDF contains 4 pages)
Resumo:
Congress established a legal imperative to restore the quality of our surface waters when it enacted the Clean Water Act in 1972. The act requires that existing uses of coastal waters such as swimming and shellfishing be protected and restored. Enforcement of this mandate is frequently measured in terms of the ability to swim and harvest shellfish in tidal creeks, rivers, sounds, bays, and ocean beaches. Public-health agencies carry out comprehensive water-quality sampling programs to check for bacteria contamination in coastal areas where swimming and shellfishing occur. Advisories that restrict swimming and shellfishing are issued when sampling indicates that bacteria concentrations exceed federal health standards. These actions place these coastal waters on the U.S. Environmental Protection Agencies’ (EPA) list of impaired waters, an action that triggers a federal mandate to prepare a Total Maximum Daily Load (TMDL) analysis that should result in management plans that will restore degraded waters to their designated uses. When coastal waters become polluted, most people think that improper sewage treatment is to blame. Water-quality studies conducted over the past several decades have shown that improper sewage treatment is a relatively minor source of this impairment. In states like North Carolina, it is estimated that about 80 percent of the pollution flowing into coastal waters is carried there by contaminated surface runoff. Studies show this runoff is the result of significant hydrologic modifications of the natural coastal landscape. There was virtually no surface runoff occurring when the coastal landscape was natural in places such as North Carolina. Most rainfall soaked into the ground, evaporated, or was used by vegetation. Surface runoff is largely an artificial condition that is created when land uses harden and drain the landscape surfaces. Roofs, parking lots, roads, fields, and even yards all result in dramatic changes in the natural hydrology of these coastal lands, and generate huge amounts of runoff that flow over the land’s surface into nearby waterways. (PDF contains 3 pages)
Resumo:
(PDF contains 24 pages)
Resumo:
The bay anchovy occurs along the Atlantic and Gulf of Mexico coasts, from Cape Cod, Massachusetts, to Yucatan, Mexico (Hildebrand 1963), except for the Florida Keys where it is apparently absent (Daly 1970). (PDF contains 22 pages)
Resumo:
(PDF contains 24 pages)
Resumo:
The Chesapeake and Delaware Canal is a man-made waterway connecting the upper Chesapeake Bay with the Delaware Bay. It started in 1829 as a private barge canal with locks, two at the Delaware end, and one at the Chesapeake end. For the most part, natural tidal and non-tidal waterways were connected by short dredged sections to form the original canal. In 1927, the C and D Canal was converted to a sea-level canal, with a controlling depth of 14 feet, and a width of 150 feet. In 1938 the canal was deepened to 27 feet, with a channel width of 250 feet. Channel side slopes were dredged at 2.5:1, thus making the total width of the waterway at least 385 feet in those segments representing new cuts or having shore spoil area dykes rising above sea level. In 1954 Congress authorized a further enlargement of the Canal to a depth of 35 feet and a channel width of 450 feet. (pdf contains 27 pages)
Resumo:
O presente trabalho visa contribuir para a valorização e conservação dos cursos dágua e biodiversidade em área de Mata Atlântica no Estado do Rio de Janeiro, através da caracterização ambiental preliminar do sistema rio - estuário Córrego Andorinhas, localizado no Parque Estadual da Ilha Grande (RJ), utilizando indicadores abióticos e bióticos. As amostragens ocorreram de 20/10/11 a 22/10/11, pela manhã e tarde, em duas profundidades de três estações. O fitoplâncton e protozooplâncton foram coletados com frascos de polipropileno (500 ml), fixados com formaldeído 2% neutralizado com bórax e analisados em câmaras de sedimentação de Uthermöl. O zooplâncton foi coletado com rede de 68 μm de malha, fixado com formaldeído 4% neutralizado com bórax e analisado em subamostras. Variáveis abióticas foram analisadas in situ com sondas. Os nutrientes foram coletados com garrafa de Van Dorn e frascos de polipropileno, congeladas e levadas para análise no laboratório de Geoquímica da UFF. A estação AN-01 apresentou menores valores de temperatura da água (19 C), condutividade (2,3 μS/cm) e turbidez (1,1 UNT), mas com maiores valores de OD (9,6 mg/L). Maiores valores de turbidez (6,9 UNT) e pH (7,7) foram registrados na estação AN-02, enquanto a estação AN-03 apresentou maiores valores de temperatura da água (23,7 C) e condutividade (1951 μS/cm). O fitoplâncton apresentou valores máximos nas estações AN-02 manhã em 22/10/11 (4,28 x 103 ind/L) e AN-03 tarde em 20/10/11(3,4 x 103 ind/L). O zooplâncton apresentou valores máximos na estação AN-03 manhã (421,2 x 103 ind/L) e tarde (45,8 x 103 ind/L). Os valores máximos registrados para protozooplâncton foram registrados nas estações AN-02 manhã em 22/10/11 (35,1 x 103 ind/L) tarde em 21/10/11 (12,6 x 103 ind/L). A partir dos dados abióticos, caracterizou-se o sistema como oligo-mesotrófico, com características distintas em seus pontos de coleta: A dominância de sarcodinos, diatomáceas e calanóides, em riqueza e densidade, demonstram o caráter estuarino, pois protozoários são indicadores de ambientes lóticos continentais, calanóides de ambientes marinhos e diatomáceas representantes de ambos os ambientes. Este estudo preliminar demonstrou a integridade ambiental do estuário, fato que reflete em sua preservação e da Mata Atlântica em seu entorno.