987 resultados para Water uptake


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A porosidade do solo é de extrema importância à produtividade agrícola, uma vez que, em condições adversas, pode dificultar a penetração das raízes e, consequentemente, limitar o adequado aproveitamento dos nutrientes e da água disponível. Na Fazenda Bonança, em Pereira Barreto - SP, em 2005, foi analisada a produtividade de forragem do milho (MSF), a macroporosidade (MA), a microporosidade (MI) e a porosidade total (PT) de um Latossolo Vermelho distrófico (Acrustox Háplico), sob plantio direto, em três profundidades. O objetivo foi estudar as correlações lineares e espaciais entre os atributos da planta e do solo, na tentativa de selecionar, entre os do solo, um indicador da sua qualidade física de boa representatividade para a produtividade da forragem. Foi instalada a malha geoestatística para a coleta dos dados do solo e da planta, contendo 125 pontos amostrais numa área de 2.500 m². Os atributos estudados apresentaram variabilidade entre baixa e muito alta. Também, seguiram padrões espaciais claramente definidos, com alcances da dependência espacial entre 6,6 e 31,1 m. Apesar da correlação linear simples entre a MSF e a MI na profundidade de 0,10-0,20 m ter sido baixa, foi extremamente significativa. Contudo, do ponto de vista espacial, houve elevada correlação inversa entre tais variáveis. Assim, a MI2 apresentou-se como satisfatório indicador da qualidade física do solo de Pereira Barreto - SP, quando destinado à produtividade de forragem do milho.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Well-fitted dentures prevent hyperplasic lesions, provide chewing efficiency and promote patient's comfort. Several factors may affect final adaptation of dentures, as the type of the acrylic resin, the flask cooling procedure and the water uptake. This investigation evaluated the effect of water storage and two different cooling procedures [bench cooling (BC) for 2 h; running water (RW) at 20 degreesC for 45 min] on the final adaptation of denture bases. A heat-cured acrylic resin (CL, Classico, Classico Artigos Odontologicos) and two microwave-cured acrylic resins [Acron MC, (AC) GC Dent. Ind. Corp.; Onda Cryl (OC), Classico Artigos Odontologicos] were used to make the bases. Adaptation was assessed by measuring the weight of an intervening layer of silicone impression material between the base and the master die. Data was submitted to ANOVA and Tukey's test (0.05). The following means were found: (BC) CL=0.72 +/- 0.03 a; AC=0.70 +/- 0.03 b; OC=0.76 +/- 0.04 c//(RW) CL= 1.00 +/- 0.11 a; AC=1.00 +/- 0.12 a; OC=0.95 +/- 0.10 a. Different labels join groups that are not statistically different (P > 0.05). Comparisons are made among groups submitted to the same cooling procedure (BC or RW). The conclusions are: interaction of type of material and cooling procedure had a statistically significant effect on the final adaptation of the denture bases (P < 0.05); water storage was not detected as a source of variance (P > 0.05) on the final adaptation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Malpighian tubules of workers of the fire ant Solenopsis saevissima (Myrmicinae) were analyzed by scanning and transmission electron microscopy in order to determine their functional organization and association with the hindgut epithelium. The ants showed six Malpighian tubules with three segments morphologically and structurally different. The proximal segment was long and its cells showed abundant smooth endoplasmic reticulum and lipid droplets, which suggest their role in lipid secretion. The mid segment was long and undulated and it was composed by the cells that showed the typical features of ion transporting epithelia. The distal segment, short and flattened, adheres to the rectum wall. The cells of this segment showed the basal lamina fused to that of the rectum, it is probable that this part of the tubule may play a role in ion and water uptake from the feces. (C) 2002 Elsevier B.V. Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Produção Vegetal) - FCAV

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As sementes de anonáceas são conhecidas por apresentarem mecanismos de dormência, o que dificulta a perpetuação das espécies e a formação de áreas produtivas para a exploração comercial. Deste modo, os objetivos deste trabalho foram estudar curva de aquisição de água; a germinação de sementes tratadas com GA3 e GA4+7 + Benziladenina; o balanço hormonal e a degradação de reservas em sementes de Annona diversifolia Saff e Annona purpurea Moc & Sessé ex Dunal tratadas com reguladores vegetais para a superação da dormência. Para tanto foram realizados três experimentos. Para a construção da curva de aquisição de água foram utilizadas 4 repetições de 25 sementes que foram mantidas em embebição e pesadas durante 480 horas. O segundo experimento foi constituído pela germinação das sementes tratadas com os reguladores vegetais; o delineamento experimental empregado foi o inteiramente casualizado com 4 repetições de 25 sementes por parcela em esquema fatorial 2 x 7 (reguladores x concentrações). Os tratamentos foram constituídos pelas combinações entre concentrações de GA3 e de GA4+7 + Benziladenina (GA4+7 + BA) x 0, 200, 400, 500, 600, 800 e 1000 mg L-1 i.a.. No terceiro experimento foram quantificados ABA (Ácido abscísico) e GA (Giberelinas), proteínas, açúcares...

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oral administration is widely accepted route for drug delivery and solid dosage forms are commonly employed. The variation of absorption profiles along the human gastrointestinal tract (GIT) and the ability to target drugs by adequate dosage forms to distinct sites is the challenge in the pharmaceutical development of solid dosage forms. AC Biosusceptometry (ACB) is a technique that deserves consideration due to its features, accuracy of results and versatility. The purpose of this work was to evaluate, by employing the AC Biosusceptometer, the rate of swelling of systems matrices consisting of hydrophilic polymer (hydroxypropyl methyl cellulose) and magnetic material. Matrices tablets were evaluated in vitro to a more detailed analysis of kinetics of swelling, in addition to the study and application of mathematical models to correlate the magnetic area variation and the water uptake. All the procedures for qualitative and quantitative analysis of digital signals as well as the magnetic images processing were performed in MatLab® (Mathworks Inc.). ACB technique proved to be useful towards estimating the swelling properties of hydrophilic matrices in vitro, showing a promising capacity for further analyses involving dissolution test and in vivo studies, supporting their innovative potential pharmaceutical applications

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Large areas of Amazonian evergreen forest experience seasonal droughts extending for three or more months, yet show maximum rates of photosynthesis and evapotranspiration during dry intervals. This apparent resilience is belied by disproportionate mortality of the large trees in manipulations that reduce wet season rainfall, occurring after 2-3 years of treatment. The goal of this study is to characterize the mechanisms that produce these contrasting ecosystem responses. A mechanistic model is developed based on the ecohydrological framework of TIN (Triangulated Irregular Network)-based Real Time Integrated Basin Simulator + Vegetation Generator for Interactive Evolution (tRIBS+VEGGIE). The model is used to test the roles of deep roots and soil capillary flux to provide water to the forest during the dry season. Also examined is the importance of "root niche separation," in which roots of overstory trees extend to depth, where during the dry season they use water stored from wet season precipitation, while roots of understory trees are concentrated in shallow layers that access dry season precipitation directly. Observational data from the Tapajo's National Forest, Brazil, were used as meteorological forcing and provided comprehensive observational constraints on the model. Results strongly suggest that deep roots with root niche separation adaptations explain both the observed resilience during seasonal drought and the vulnerability of canopy-dominant trees to extended deficits of wet season rainfall. These mechanisms appear to provide an adaptive strategy that enhances productivity of the largest trees in the face of their disproportionate heat loads and water demand in the dry season. A sensitivity analysis exploring how wet season rainfall affects the stability of the rainforest system is presented. Citation: Ivanov, V. Y., L. R. Hutyra, S. C. Wofsy, J. W. Munger, S. R. Saleska, R. C. de Oliveira Jr., and P. B. de Camargo (2012), Root niche separation can explain avoidance of seasonal drought stress and vulnerability of overstory trees to extended drought in a mature Amazonian forest, Water Resour. Res., 48, W12507, doi:10.1029/2012WR011972.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study of mass transport in polymeric membranes has grown in importance due to its potential application in many processes such as separation of gases and vapors, packaging, controlled drug release. The diffusion of a low molecular weight species in a polymer is often accompanied by other phenomena like swelling, reactions, stresses, that have not been investigated in all their aspects yet. Furthermore, novel materials have been developed that include inorganic fillers, reactive functional groups or ions, that make the scenery even more complicated. The present work focused on the experimental study of systems where the diffusion is accompanied by other processes; suitable models were also developed to describe the particular circumstances in order to understand the underlying concepts and be able to design the performances of the material. The effect of solvent-induced deformation in polymeric films during sorption processes was studied since the dilation, especially in constrained membranes, can cause the development of stresses and therefore early failures of the material. The bending beam technique was used to test the effects of the dilation and the stress induced in the polymer by penetrant diffusion. A model based on the laminate theory was developed that accounts for the swelling and is able to predict the stress that raise in the material. The addition of inorganic fillers affects the transport properties of polymeric films. Mixed matrix membranes based on fluorinated, high free volume matrices show attractive performances for separation purposes but there is a need for deeper investigation of the selectivity properties towards gases and vapors. A new procedure based on the NELF model was tested on the experimental data; it allows to predict solubility of every penetrant on the basis of data for one vapor. The method has proved to be useful also for the determination of the diffusion coefficient and for an estimation of the permeability in the composite materials. Oxygen scavenging systems can overcome lack of barrier properties in common polymers that forbids their application in sensitive applications as food packaging. The final goal of obtaining a membrane almost impermeable to oxygen leads to experimental times out of reach. Hence, a simple model was developed in order to describe the transport of oxygen in a membrane with also reactive groups and analyze the experimental data collected on SBS copolymers that show attractive scavenging capacity. Furthermore, a model for predicting the oxygen barrier behavior of a film formed as a blend of OSP in a common packaging material was built, considering particles capable of reactions with oxygen embedded in a non-reactive matrix. Perfluorosulphonic acid ionomers (PFSI) are capturing attention due to a high thermal and chemical resistance coupled with very peculiar transport properties, that make them appropriate to be used in fuel cells. The possible effect of different formation procedure was studied together with the swelling due to water sorption since both water uptake and dilation can dramatically affect the fuel cells performances. The water diffusion and sorption was studied with a FTIR-ATR spectrometer that can give deeper information on the bonds between water molecules and the sulphonic hydrophilic groups and, therefore, on the microstructure of the hydrated ionomer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The durability of stone building materials is an issue of utmost importance in the field of monument conservation. In order to be able to preserve our built cultural heritage, the thorough knowledge of its constituent materials and the understanding of the processes that affect them are indispensable. The main objective of this research was to evaluate the durability of a special stone type, the crystalline stones, in correlation with their intrinsic characteristics, the petrophysical properties. The crystalline stones are differentiated from the cemented stones on the basis of textural features. Their most important specific property is the usually low, fissure-like porosity. Stone types of significant monumental importance, like the marble or granite belong to this group. The selected materials for this investigation, indeed, are a marble (Macael marble, Spain) and a granite (Silvestre Vilachán granite, Spain). In addition, an andesite (Szob andesite, Hungary) also of significant monumental importance was selected. This way a wide range of crystalline rocks is covered in terms of petrogenesis: stones of metamorphic, magmatic and volcanic origin, which can be of importance in terms of mineralogical, petrological or physical characteristics. After the detailed characterization of the petrophysical properties of the selected stones, their durability was assessed by means of artificial ageing. The applied ageing tests were: the salt crystallization, the frost resistance in pure water and in the presence of soluble salts, the salt mist and the action of SO2 in the presence of humidity. The research aimed at the understanding of the mechanisms of each weathering process and at finding the petrophysical properties most decisive in the degradation of these materials. Among the several weathering mechanisms, the most important ones were found to be the physical stress due to crystallization pressure of both salt and ice, the thermal fatigue due to cyclic temperature changes and the chemical reactions (mostly the acidic attack) between the mineral phases and the external fluids. The properties that fundamentally control the degradation processes, and thus the durability of stones were found to be: the mineralogical and chemical composition; the hydraulic properties especially the water uptake, the permeability and the drying; the void space structure, especially the void size and aperture size distribution and the connectivity of the porous space; and the thermal and mechanical properties. Because of the complexity of the processes and the high number of determining properties, no mechanisms or characteristics could be identified as typical for crystalline stones. The durability or alterability of each stone type must be assessed according to its properties and not according to the textural or petrophysical classification they belong to. Finally, a critical review of standardized methods is presented, based on which an attempt was made for recommendations of the most adequate methodology for the characterization and durability assessment of crystalline stones.