993 resultados para Water quantity


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time-variable gravity data from the Gravity Recovery And Climate Experiment (GRACE) mission are used to study total water content over Australia for the period 2002–2010. A time-varying annual signal explains 61% of the variance of the data, in good agreement with two independent estimates of the same quantity from hydrological models. Water mass content variations across Australia are linked to Pacific and Indian Ocean variability, associated with El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD), respectively. From 1989, positive (negative) IOD phases were related to anomalously low (high) precipitation in southeastern Australia, associated with a reduced (enhanced) tropical moisture flux. In particular, the sustained water mass content reduction over central and southern regions of Australia during the period 2006–2008 is associated with three consecutive positive IOD events.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Foreword. Climate change is bad news for water resources – and thus for human development, societies, economies, the environment, and local and global security. The increasing frequency and severity of extreme weather events such as droughts and floods serves as a reminder of the effects climate change can have on the quantity and quality of global water reserves, and thus on various other aspects of life. Even though the effects differ from region to region, this is a global challenge with far-reaching consequences to which Europe is not immune. As the world leaders gather in Paris in December 2015 to discuss a new international climate deal, it is worth to remind politicians, businesses and citizens of the water challenge and its wider implications, which already affect us today – and which will only get worse with climate change. However, water-related risks resulting from climate change are not a fatality and damage control doesn’t have to be the only mantra. Placing the water challenge at the centre of political and security dialogues, development strategies and climate mitigation and adaptation measures, and implementing smarter water management, could also bring great economic, environmental and social benefits, in and outside the European Union. It would also contribute to global security. Water matters – now more than ever. This is also what this publication demonstrates. Building on the European Policy Centre’s, two-year “Blue Gold” project, this publication shows the rationale for action, how the EU could use its existing internal and external policy instruments to tackle the water challenge with its various dimensions and the benefits of action.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The establishment of a Total Maximum Daily Load sets the pollutant reduction goal necessary to improve impaired waters. It determines the load, or quantity of any given pollutant that can be allowed in a particular water body. A TDML must consider all potential sources of pollutants whether point or nonpoint. It also takes into account a margin of safety, which reflects scientific uncertainty, as well as the effects of seasonal variation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Projected air and ground temperatures are expected to be higher in Arctic and sub-Arcticlatitudes and with temperatures already close to the limit where permafrost can exist,resistance against degradation is low. With thawing permafrost, the landscape is modifiedwith depression in which thermokarst lakes emerge. In permafrost soils a considerableamount of soil organic carbon is stored, with the potential of altering climate even furtherif expansion and formation of new thermokarst lakes emerge, as decay releasesgreenhouse gases (C02 and CH4) to the atmosphere. Analyzing the spatial distribution andmorphometry over time of thermokarst lakes and other water bodies, is of importance inaccurately predict carbon budget and feedback mechanisms, as well as to assess futurelandscape layout and these features interaction. Different types of high-spatial resolutionaerial and satellite imageries from 1963, 1975, 2003, 2010 and 2015, were used in bothpre- and post-classification change detection analyses. Using object oriented segmentationin eCognition combined with manual adjustments, resulted in digitalized water bodies>28m2 from which direction of change and morphometric values were extracted. Thequantity of thermokarst lakes and other water bodies was in 1963 n=92, with succeedingyears as a trend decreased in numbers, until 2010-2015 when eleven water bodies wereadded in 2015 (n=74 to n=85). In 1963-2003, area of these water bodies decreased with50 651m2 (189 446-138 795m2) and continued to decrease in 2003-2015 ending at 129337m2. Limnicity decreased from 19.9% in 1963 to 14.6% in 2003 (-5.3%). In 2010 and2015 13.7-13.6%. The late increase in water bodies differs from an earlier hypothesis thatsporadic permafrost regions experience decrease in both area and quantity of thermokarstlakes and water bodies. During 1963-2015, land gain has been in dominance of the ratiobetween the two competing processes of expansion and drainage. In 1963-1975, 55/45%,followed by 90/10% in 1975-2003. After major drainage events, land loss increased to62/38% in 2010-2015. Drainage and infilling rates, calculated for 15 shorelines werevaried across both landscape and parts of shorelines, with in average 0.17/0.15/0.14m/yr.Except for 1963-1975 when rate of change in average was in opposite direction (-0.09m/yr.), likely due to evident expansion of a large thermokarst lake. Using a squaregrid, distribution of water bodies was determined, with an indistinct cluster located in NEand central parts. Especially for water bodies <250m2, which is the dominant area classthroughout 1963-2015 ranging from n=39-51. With a heterogeneous composition of bothsmall and large thermokarst lakes, and with both expansion and drainage altering thelandscape in Tavvavuoma, both positive and negative climate feedback mechanisms are inplay - given that sporadic permafrost still exist.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High concentrations of ammonium (up to 0.1 cmol/kg) have been observed below 1 m depth in a Vertosol soil near Warra in south-eastern Queensland. This study examined whether ammonium leaching could be responsible for the ammonium accumulation observed in the Warra soil. This was done by using quantity/intensity (Q/I) relationships to compare the ammonium retention capacity of the Warra soil with other similar soils throughout the region that did not contain elevated subsoil ammonium concentrations. Analysis of Q/I curves revealed that in the concentration range studied, the amount of ammonium retained on high affinity adsorption sites in all 3 soils was low, and the Warra soil was not significantly different from the other 2 soils. The ability of the soils to retain ammonium in the soil solution against leaching [i.e. their potential buffer capacity (PBC)] did differ between soils and was greatest at Warra. This indicates that at any one time the Warra soil holds more ammonium on the exchange complex and less in solution than the other soils examined. It was concluded that ammonium is no more likely to leach through the surface horizons of the Warra soil than the other soils examined. Indeed, the data indicated that the Warra soil probably has greater capacity to retain ammonium against leaching due to its greater PBC. Consequently, it is considered unlikely that leaching of ammonium has been a major contributor to the subsoil ammonium concentrations at Warra.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relative merits of different systems of property rights to allocate water among different extractive uses are evaluated for the case where variability of supply is important. Three systems of property rights are considered. In the first, variable supply is dealt with through the use of water entitlements defined as shares of the total quantity available. In the second, there are two types of water entitlements, one for water with a high security of supply and the other a lower security right for the residual supply. The third is a system of entitlements specified as state-contingent claims. With zero transaction costs, all systems are efficient. In the realistic situation where transaction costs matter, the system based on state-contingent claims is globally optimal, and the system with high-security and lower security entitlements is preferable to the system with share entitlements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water hyacinth leaves in natural populations vary from being long and thin-petioled to being short with inflated petioles. A variety of factors has been used experimentally to alter water hyacinth leaf shape, but what controls the development of leaf morphology in the field has not been established. We measured photosynthetic photon flux density (PPFD) and spectral distribution of radiation in a natural water hyacinth population. PPFD in the center of the water hyacinth mat was reduced to 2.7% of full sunlight, and the red to far red (R:FR) ratio was reduced to 0.28. When shoot tips of plants were exposed to artificial light environments, only plants in the treatment with a R:FR ratio comparable to that in the natural population produced leaves with long, thin petioles. Shoot tips in full sun or covered with clear plastic bags or bags that reduced light quantity without greatly altering light quality produced shorter leaves with inflated petioles. We hypothesize that the altered light quality inside a mat is a major environmental control of water hyacinth leaf morphology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Bahamas is a small island nation that is dealing with the problem of freshwater shortage. All of the country’s freshwater is contained in shallow lens aquifers that are recharged solely by rainfall. The country has been struggling to meet the water demands by employing a combination of over-pumping of aquifers, transport of water by barge between islands, and desalination of sea water. In recent decades, new development on New Providence, where the capital city of Nassau is located, has created a large area of impervious surfaces and thereby a substantial amount of runoff with the result that several of the aquifers are not being recharged. A geodatabase was assembled to assess and estimate the quantity of runoff from these impervious surfaces and potential recharge locations were identified using a combination of Geographic Information Systems (GIS) and remote sensing. This study showed that runoff from impervious surfaces in New Providence represents a large freshwater resource that could potentially be used to recharge the lens aquifers on New Providence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Successfully rehabilitating drained wetlands through hydrologic restoration is dependent on defining restoration targets, a process that is informed by pre-drainage conditions, as well as understanding linkages between hydrology and ecosystem structure. Paleoecological records can inform restoration goals by revealing long-term patterns of change, but are dependent on preservation of biomarkers that provide meaningful interpretations of environmental change. In the Florida Everglades, paleohydrological hind-casting could improve restoration forecasting, but frequent drying of marsh soils leads to poor preservation of many biomarkers. To determine the effectiveness of employing siliceous subfossils in paleohydrological reconstructions, we examined diatoms, plant and sponge silico-sclerids from three soil cores in the central Everglades marshes. Subfossil quality varied among cores, but the abundance of recognizable specimens was sufficient to infer 1,000–3,000 years of hydrologic change at decadal to centennial resolution. Phytolith morphotypes were linked to key marsh plant species to indirectly measure fluctuations in water depth. A modern dataset was used to derive diatom-based inferences of water depth and hydroperiod (R2 = 0.63, 0.47; RMSE = 14 cm, 120 days, respectively). Changes in subfossil quality and abundances at centennial time-scales were associated with mid-Holocene climate events including the Little Ice Age and Medieval Warm Period, while decadal-scale fluctuations in assemblage structure during the twentieth century suggested co-regulation of hydrology by cyclical climate drivers (particularly the Atlantic Multidecadal Oscillation) and water management changes. The successful reconstructions based on siliceous subfossils shown here at a coarse temporal scale (i.e., decadal to centennial) advocate for their application in more highly resolved (i.e., subdecadal) records, which should improve the ability of water managers to target the quantity and variability of water flows appropriate for hydrologic restoration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissolved organic matter (DOM) is an essential component of the carbon cycle and a critical driver in controlling variety of biogeochemical and ecological processes in wetlands. The quality of this DOM as it relates to composition and reactivity is directly related to its sources and may vary on temporal and spatial scales. However, large scale, long-term studies of DOM dynamics in wetlands are still scarce in the literature. Here we present a multi-year DOM characterization study for monthly surface water samples collected at 14 sampling stations along two transects within the greater Everglades, a subtropical, oligotrophic, coastal freshwater wetland-mangrove-estuarine ecosystem. In an attempt to assess quantitative and qualitative variations of DOM on both spatial and temporal scales, we determined dissolved organic carbon (DOC) values and DOM optical properties, respectively. DOM quality was assessed using, excitation emission matrix (EEM) fluorescence coupled with parallel factor analysis (PARAFAC). Variations of the PARAFAC components abundance and composition were clearly observed on spatial and seasonal scales. Dry versus wet season DOC concentrations were affected by dry-down and re-wetting processes in the freshwater marshes, while DOM compositional features were controlled by soil and higher plant versus periphyton sources respectively. Peat-soil based freshwater marsh sites could be clearly differentiated from marl-soil based sites based on EEM–PARAFAC data. Freshwater marsh DOM was enriched in higher plant and soil-derived humic-like compounds, compared to estuarine sites which were more controlled by algae- and microbial-derived inputs. DOM from fringe mangrove sites could be differentiated between tidally influenced sites and sites exposed to long inundation periods. As such coastal estuarine sites were significantly controlled by hydrology, while DOM dynamics in Florida Bay were seasonally driven by both primary productivity and hydrology. This study exemplifies the application of long term optical properties monitoring as an effective technique to investigate DOM dynamics in aquatic ecosystems. The work presented here also serves as a pre-restoration condition dataset for DOM in the context of the Comprehensive Everglades Restoration Plan (CERP).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Urban areas such as megacities (those with populations greater than 10 million) are hotspots of global water use and thus face intense water management challenges. Urban areas are influenced by local interactions between human and natural systems and interact with distant systems through flows of water, food, energy, people, information, and capital. However, analyses of water sustainability and the management of water flows in urban areas are often fragmented. There is a strong need to apply integrated frameworks to systematically analyze urban water dynamics and factors that influence these dynamics. We apply the framework of telecoupling (socioeconomic and environmental interactions over distances) to analyze urban water issues, using Beijing as a demonstration megacity. Beijing exemplifies the global water sustainability challenge for urban settings. Like many other cities, Beijing has experienced drastic reductions in quantity and quality of both surface water and groundwater over the past several decades; it relies on the import of real and virtual water from sending systems to meet its demand for clean water, and releases polluted water to other systems (spillover systems). The integrative framework we present demonstrates the importance of considering socioeconomic and environmental interactions across telecoupled human and natural systems, which include not only Beijing (the water-receiving system) but also water-sending systems and spillover systems. This framework helps integrate important components of local and distant human–nature interactions and incorporates a wide range of local couplings and telecouplings that affect water dynamics, which in turn generate significant socioeconomic and environmental consequences, including feedback effects. The application of the framework to Beijing reveals many research gaps and management needs. We also provide a foundation to apply the telecoupling framework to better understand and manage water sustainability in other cities around the world.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this paper is to make a characterization of water quality problems, in the river Vouga, regarding its use for public water supply. The river Vouga basin is located in a mountainous area, draining to the coastal lagoon of the Ria de Aveiro. Other medium size rivers also contribute to the load of pollution entering the estuarine system of the Ria de Aveiro. Two major impacts of the pollution in the river Vouga basin were identified. One is the eutrophication process of the lower reach of the river, including the Ria de Aveiro; the other is the occasional deterioration in the quality of the water abstracted from the medium reach of river Vouga. The causes of this deterioration are related to the enrichment of the river water with organic material. To improve the river water quality, both urban wastewater and agriculture related sources, must be controlled.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study shows a possibility of using municipal sewage sludge after thermal treatment in the production of a filtering material to water treatment. Due to the fast urbanization and implementation of high standards for effluent in many countries in recent years, the sewage sludge is being produced in an ever increasing amount. Therefore, the use of sludge is a suitable solution for the expected large quantity of sludge. Dehydration of sludge was performed by controlled heating at temperatures of 1100 degrees C, 850 degrees C, 650 degrees C, 350 degrees C for 3 hours. After thermal treatment the sludge was characterized by X-ray fluorescence, TG/DTG/DTA, residue solubilization and residue lixiviation tests. The aim of the present work was to observe, thought the characterization techniques, if the treated sewage sludge is or not adequate to be used as filter material to water treatment. It will be verified which treatment temperature of the sludge offer possibility to its use in water treatment without carrying pollutants in concentrations out of the standards.