1000 resultados para Water drilling
Resumo:
Degradation of organic matter in slightly organic-rich (1 wt% organic carbon) Neogene calcareous turbidites of the Argo Basin at Site 765 by sulfate reduction results in pore-water phosphate, ammonium, manganese, and carbonate alkalinity maxima. Pore-water calcium and magnesium decrease in the uppermost 100 meters below seafloor (mbsf) in response to the precipitation of calcian dolomite with an average composition of Ca1.15Mg0.83Fe0.02(CO3)2. Clear, euhedral dolomite rhombs range from <1 to 40 µm in diameter and occur in trace to minor amounts (<1-2 wt%) in Pleistocene to Pliocene sediment (62-210 mbsf) The abundance of dolomite increases markedly (2-10 wt%) in Miocene sediment (210-440 mbsf). The dolomite is associated with diagenetic sepiolite and palygorskite, as well as redeposited biogenic low-Mg calcite and aragonitic benthic foraminifers. Currently, dolomite is precipitating at depth within the pore spaces of the sediment, largely as a result of aragonite dissolution. The rate of aragonite dissolution, calculated from the pore-water strontium profile, is sufficient to explain the amount of dolomite observed at Site 765. A foraminiferal aragonite precursor is further supported by the carbon and oxygen isotopic compositions of the dolomite, which are fairly close to the range of isotopic compositions observed for Miocene benthic foraminifers. Dolomite precipitation is promoted by the degradation of organic matter by sulfate-reducing bacteria because the lower pore-water sulfate concentration reduces the effect of sulfate inhibition on the dolomite reaction and because the higher carbonate alkalinity increases the degree of saturation of the pore waters with dolomite. Organic matter degradation also results in the precipitation of pyrite and trace amounts of apatite (francolite), and the release of iron and manganese to the pore water by reduction of Fe and Mn oxides. Spherical, silt-sized aggregates of microcrystalline calcian rhodochrosite occur in trace to minor amounts in Lower Cretaceous sediment from 740 to 900 mbsf at Site 765. A negative carbon isotopic composition suggests that the rhodochrosite formed early in the sulfate reduction zone, but a depleted oxygen isotopic composition suggests that the rhodochrosite may have recrystallized at deeper burial depths.
Resumo:
Selected parts of ten frozen core samples from Holes 482A, 482B, 483A, and 485A, Leg 65 of the Deep Sea Drilling Project (DSDP), were analyzed for residual carbohydrates in order to determine the provenance and history of the organic material in the sediments. The samples, which represented silty-clay, shale, and nannofossil- chalk sediments, were analyzed for water-soluble monosaccharides, acid-soluble monosaccharides, and for starch and cellulose. Most samples yielded positive results for acid-extractable (polymeric) arabinose, fucose, xylose, mannose, galactose, and glucose. Amylose was detected in seven of the samples, whereas cellulose was found in only one. Possible explanations for the relatively high levels of free sugars are suggested in the conclusions to this chapter.
Resumo:
Mineralogical and H, O, Sr, and Nd isotope compositions have been analyzed on a set of representative samples from the 17-m.y. section in ODP Leg 116 Holes 717C and 718C. Based on the mineralogical composition of the fraction <2 µm together with the lithogenic-biogenic composition of the fraction >63 µm, the whole section can be subdivided into three major periods of sedimentation. Between 17.1 and 6 m.y., and between 0.8 m.y. to present, the sediments are characterized by sandy and silty turbiditic inputs with a high proportion of minerals derived from a gneissic source without alteration. In the fraction <2 µm, illite and chlorite are dominant over smectite and kaolinite. The granulometric fraction >63 µm contains quartz, muscovite, biotite, chlorite, and feldspars. The 6-to 0.8-m.y. period is represented by an alternation of sandy/silty horizons, muds, and calcareous muds rich in smectite, and kaolinite (50% to 85% of the fraction <2 µm) and bioclastic material. The presence of smectite and kaolinite, as well as the 18O/16O and the 87Sr/86Sr ratios of the fraction <2 µm, imply an evolution in a soil environment and exchanges with meteoric ground water. The ranges of isotopic compositions are limited throughout the section: d18O quartz = 11.7 to 13.3 per mil, 87Sr/86Sr = 0.733 to 0.760 and epsilon-Nd (0) = -17.4 to -13.8. These values are within those of the High Himalaya Crystalline series, and they are considered to reflect this source region. The data imply that, since 17 Ma, this formation has supplied the major part of the eroded material.
Resumo:
Oxygen isotope values from calcareous nannofossils in four cores spanning the Quaternary from DSDP Site 593 in Tasman Sea are compared with the delta18O signal of planktonic and benthic foraminifers from the same samples. The classic mid-late Quaternary isotope stages are exhibited with stage 12 particularly well developed. When delta18O values of nannofossils are adjusted for coccolithophore vital effects they indicate larger (by 1-6°C) surface to bottom paleotemperature gradients and greater (by 1-3°C) changes in mean sea-surface temperature between full glacial and interglacial conditions than do delta18O values from planktonic foraminifers. Along with the foraminifers, the nannofossils record a bimodal distribution of delta18O between the early and mid-late Quaternary, indicating a significant change in global ice budget. The delta13C of nannofossils also shows a bimodal distribution, but is opposite to that for the foraminifers. Nannofossil delta18O values record a shift of c. -0.8? at isotope stage 8 corresponding to a major reduction in abundance of the previously dominant gephyrocapsids. A shift in delta13C of c. -1.5? also occurs at stage 8, and a shift in delta13C of c. +1.2? at around stage 14. The delta18O shift in nannofossils is at least a Pacific-wide phenomenon; the delta13C shifts are possibly global. The delta13C signal of nannofossils exhibits an antipathetic relationship to that of benthic foraminifers back to isotope stage 18 but no significant correlation beyond this level to the base of the Quaternary. This is interpreted as reflecting local productivity dominating global influences on delta13C since stage 18 at DSDP Site 593. The difference between nannofossil and benthic foraminifer delta13C signals (Delta13C) tends to be maximum during glacial stages and minimum during interglacials throughout the section, showing a strong correlation with the nannofossil delta180 signal. The increased partitioning of 13C between surface and bottom waters during the glacial periods may indicate heightened productivity in surface waters in the southern Tasman Sea at these times.
Resumo:
Interstitial water studies from sites drilled during a transect of the Walvis Ridge indicate that concentration increases in calcium and decreases in magnesium toward and into the basement. These trends can be understood principally in terms of reactions taking place in Layer 2 of the oceanic crust. At Site 525, however, some removal of magnesium occurs within the sediment column. Concentration maxima of dissolved strontium clearly indicate that carbonate recrystallization occurs throughout the carbonate sediments, and studies of the Sr/Ca ratio in carbonates indicate that in chalks and limestones recrystallization is essentially complete. Predictions of dissolved strontium maxima generally fail; this can be understood as removal of strontium in basal sediments and/or basalts.
Resumo:
Ocean Drilling Program inorganic geochemistry procedures routinely overlook more than 99% of the sediment column. Present and past biogeochemical reactions alter the sediment record; however, most of these reaction zones are bypassed by the normal methods where samples are collected every 30 m. A new approach to increase resolution was introduced during Leg 119. Ten milliliters of sediment provided interstitial-water samples for ammonia, silica, sulfate, magnesium, and calcium analyses. The new method introduced some systematic differences in concentrations, as well as some decrease in precision. A number of advantages, however, may warrant using the method in some instances. In cases where routine interstitial-water data showed anomalous results, core sections were retrieved from the storage facility and resampled. The new high-resolution procedure was used to provide water samples in cases were water contents were low and routine squeezing could not recover pore water.
Resumo:
The oxygen isotope record of the planktonic foraminifera Globigerina bulloides and Neogloboquadrina pachyderma from Pliocene and early Pleistocene sediments at both DSDP site 173 and the Centerville Beach section in California suggests a large influx of isotopically light water in this area during late Pliocene and early Pleistocene time. Salinity may have been reduced by as much as 2 to 4 ?. Surface sea water paleotemperatures for the lower Pliocene range from 9.5°C to 15.5°C. The oxygen isotope record of the benthonic genus Uvigerina shows little variation indicating environmental stability at depth. At DSDP site 173 the small variation in Uvigerina is due to variation in the oxygen isotopic composition of the oceans as glaciers waxed and waned. At the Centerville Beach section the oxygen isotopic composition of Uvigerina reflects the gradual shoaling of the Humboldt Basin. Carbon and oxygen isotope ratios in G. bulloides and N. pachyderma are inversely correlated at the 95% confidence level. This may indicate that the oxygen and carbon isotopic composition of foraminifera are influenced by the same factors. On the other hand, the inverse correlation may be due to metabolic fractionation. No correlation was found between oxygen and carbon isotopic composition in Uvigerina.